Thin film aluminum nitride surface acoustic wave resonators for quantum acoustodynamics

被引:3
|
作者
Jiang, Wenbing [1 ,2 ]
Chen, Junfeng [1 ,2 ]
Liu, Xiaoyu [1 ,2 ]
Niu, Zhengqi [1 ,3 ]
Liu, Kuang [1 ,2 ]
Peng, Wei [1 ,2 ]
Wang, Zhen [1 ,2 ]
Lin, Zhi-Rong [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] ShanghaiTech Univ, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
PLATFORM;
D O I
10.1063/5.0158083
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum excitations of macroscopic surface acoustic waves (SAWs) have been tailored to control, communicate, and transduce stationary and flying quantum states. However, the limited lifetime of these hybrid quantum systems remains critical obstacles to extend their applications in quantum information processing. Here, we present potentials of thin film aluminum nitride to on-chip integrated phonons with superconducting qubits over previous bulk piezoelectric substrates. We have reported high-quality thin film GHz-SAW resonators with the highest internal quality factor Q(i) of 4:92 x 10(4) in the quantum regime. The internal losses of SAW resonators are systematically investigated by tuning the parameters of sample layout, power, and temperature. Our results manifest that SAWs on piezoelectric films are readily integrated with standard fabrication of Josephson junction quantum circuits and offer excellent acoustic platforms for high-coherence quantum acoustodynamics architectures.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Aluminum Nitride Thin Film Based Surface Acoustic Wave Sensors
    Kabulski, A.
    Pagan, V. R.
    Cortes, D.
    Burda, R.
    Mukdadi, O. M.
    Korakakis, D.
    MICROELECTROMECHANCIAL SYSTEMS - MATERIALS AND DEVICES II, 2009, 1139 : 175 - 180
  • [2] Surface acoustic wave resonators on thin film piezoelectric substrates in the quantum regime
    Luschmann, Thomas
    Jung, Alexander
    Gepraegs, Stephan
    Haslbeck, Franz X.
    Marx, Achim
    Filipp, Stefan
    Groblacher, Simon
    Gross, Rudolf
    Huebl, Hans
    MATERIALS FOR QUANTUM TECHNOLOGY, 2023, 3 (02):
  • [3] Thin film piezoelectric property considerations for surface acoustic wave and thin film bulk acoustic resonators
    Kirby, PB
    Potter, MDG
    Williams, CP
    Lim, MY
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2003, 23 (14) : 2689 - 2692
  • [4] Surface and bulk acoustic wave resonators based on aluminum nitride for bandpass filters
    Zha, Xian-Hu
    Luo, Jing-Ting
    Tao, Ran
    Fu, Chen
    AAPPS BULLETIN, 2024, 34 (01):
  • [5] Aluminum nitride surface acoustic wave resonators with high Qf product by optical lithography
    Kwon, Minhee
    Ignat, Ioan
    Platz, Daniel
    Arthaber, Holger
    Schmid, Ulrich
    SENSORS AND ACTUATORS A-PHYSICAL, 2023, 362
  • [6] Piezoelectric properties of aluminum nitride for thin film bulk acoustic wave resonator
    Nam, K
    Park, Y
    Ha, B
    Shim, D
    Song, I
    Pak, J
    Park, G
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 47 : S309 - S312
  • [7] Circuit quantum acoustodynamics with surface acoustic waves
    Riccardo Manenti
    Anton F. Kockum
    Andrew Patterson
    Tanja Behrle
    Joseph Rahamim
    Giovanna Tancredi
    Franco Nori
    Peter J. Leek
    Nature Communications, 8
  • [8] Single Crystal Aluminum Nitride Film Bulk Acoustic Resonators
    Shealy, James B.
    Shealy, Jeffrey B.
    Patel, Pinal
    Hodge, Michael D.
    Vetury, Rama
    Shealy, James R.
    2016 IEEE RADIO AND WIRELESS SYMPOSIUM (RWS), 2016, : 16 - 19
  • [9] Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications
    Moreira, Milena
    Bjurstrom, Johan
    Katardjev, Ilia
    Yantchev, Ventsislav
    VACUUM, 2011, 86 (01) : 23 - 26
  • [10] Circuit quantum acoustodynamics with surface acoustic waves
    Manenti, Riccardo
    Kockum, Anton F.
    Patterson, Andrew
    Behrle, Tanja
    Rahamim, Joseph
    Tancredi, Giovanna
    Nori, Franco
    Leek, Peter J.
    NATURE COMMUNICATIONS, 2017, 8