Regeneration of high-performance materials for electrochemical energy storage from assorted solid waste: A review

被引:7
|
作者
Zhang, Jia-feng [1 ]
Peng, De-zhao [1 ]
Gao, Xiang-gang [1 ]
Zou, Jing-tian [1 ]
Ye, Long [1 ]
Ji, Guan-jun [1 ]
Luo, Bi [1 ]
Yu, Gui-hui [1 ]
Wang, Xiao-wei [1 ]
Zhao, Zao-wen [3 ]
Zhang, Bao [1 ]
Hu, Wen-yang [1 ]
Liu, Zi-hang [1 ]
Cheng, Lei [1 ]
Zhao, Rui-rui [2 ]
机构
[1] Cent South Univ, Sch Met & Environm, Natl Engn Lab High Efficiency Recovery Refractory, Changsha 410083, Peoples R China
[2] South China Normal Univ, Sch Chem & Environm, Guangzhou 510006, Peoples R China
[3] Hainan Univ, Sch Mat Sci & Engn, Special Glass Key Lab Hainan Prov, Haikou 570228, Peoples R China
基金
中国国家自然科学基金;
关键词
Recycling solid wastes; Regenerating energy storage materials; Recycling and regenerated technology; Process evaluation; LITHIUM-ION BATTERIES; HETEROATOM-DOPED CARBON; POROUS CARBON; OXYGEN REDUCTION; CATHODE MATERIALS; SULFUR-BATTERIES; CYCLING STABILITY; ACTIVATED CARBON; ANODE MATERIALS; RE-SYNTHESIS;
D O I
10.1016/j.jclepro.2023.137628
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Competitive costs and eco-friendliness have prompted solid waste-based recycling to become a hot topic of sustainability for energy storage devices. The closed-loop model, which combines the efficient recovery of solid waste with the preparation of energy storage materials, is considered as a tremendous potential sustainable development strategy. However, large-scale issues including environmental hazards, valuable ingredients, quantity and distribution remain due to the complex nature of solid waste properties, resulting in delays in its industrial applications. This review provides a systematic overview of the regeneration of various solid wastes into energy storage materials from the point of view of processing techniques and value-varying approaches. First, a summary of the solid waste classification and disposal procedures is provided, and the pros and cons of the disposal procedures are analyzed considering the resources and the environment. Moreover, the reactivation process of the resource cycle is detailed according to the regeneration of different battery energy storage materials (lithium-ion battery, sodium-ion battery, lithium-sulfur battery, supercapacitor, fuel cell, etc.), including waste recycling and high-value material regenerated processes. In addition, a comprehensive evaluation of various types of energy storage batteries is carried out from the perspectives of economy, environment, technological difficulty, application status, and development potential, to provide a feasible reference for the future regeneration of suitable energy storage batteries. Finally, the main challenges of recycling solid wastes into energy storage materials are summarized as "two Highs and four Lows".
引用
收藏
页数:31
相关论文
共 50 条
  • [11] Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors
    Ramyakrishna Pothu
    Ravi Bolagam
    Qing-Hong Wang
    Wei Ni
    Jin-Feng Cai
    Xiao-Xin Peng
    Yue-Zhan Feng
    Jian-Min Ma
    Rare Metals, 2021, 40 : 353 - 373
  • [12] Nanocomposite phase change materials for high-performance thermal energy storage: A critical review
    Li, Zi-Rui
    Hu, Nan
    Fan, Li-Wu
    ENERGY STORAGE MATERIALS, 2023, 55 : 727 - 753
  • [13] High surface area carbon from polyacrylonitrile for high-performance electrochemical capacitive energy storage
    Gupta, Kishor
    Liu, Tianyuan
    Kavian, Reza
    Chae, Han Gi
    Ryu, Gyeong Hee
    Lee, Zonghoon
    Lee, Seung Woo
    Kumar, Satish
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (47) : 18294 - 18299
  • [14] High-Performance Relaxor Ferroelectric Materials for Energy Storage Applications
    Zhao, Peiyao
    Wang, Hongxian
    Wu, Longwen
    Chen, Lingling
    Cai, Ziming
    Li, Longtu
    Wang, Xiaohui
    ADVANCED ENERGY MATERIALS, 2019, 9 (17)
  • [15] Materials scientists on the trail of new high-performance energy storage
    不详
    CHEMSUSCHEM, 2010, 3 (02) : 135 - 135
  • [16] Harnessing deep eutectic solvents for upcycling waste membranes into high-performance adsorbents and energy storage materials
    Santhosh, K. N.
    Samage, Anita
    Mahadevaprasad, K. N.
    Aditya, D. S.
    Jayapandi, S.
    Yoon, Hyeonseok
    Nataraj, S. K.
    CHEMICAL ENGINEERING JOURNAL, 2024, 484
  • [17] Porous Carbon Materials Based on Blue Shark Waste for Application in High-Performance Energy Storage Devices
    Brandao, Ana T. S. C.
    State, Sabrina
    Costa, Renata
    Enache, Laura-Bianca
    Potorac, Pavel
    Vazquez, Jose A.
    Valcarcel, Jesus
    Silva, A. Fernando
    Enachescu, Marius
    Pereira, Carlos M. M.
    APPLIED SCIENCES-BASEL, 2023, 13 (15):
  • [18] A review on the nitrogenated carbon materials and their electrochemical performance for energy storage applications
    Kaushal, Shweta
    Andrews, John
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 100 : 1231 - 1245
  • [19] Recent advances in layered double hydroxides as electrode materials for high-performance electrochemical energy storage devices
    Sarfraz, Mansoor
    Shakir, Imran
    JOURNAL OF ENERGY STORAGE, 2017, 13 : 103 - 122
  • [20] Sodium vanadium oxides: From nanostructured design to high-performance energy storage materials
    Yifan Dong
    Shuolei Deng
    Ziting Ma
    Ge Yin
    Changgang Li
    Xunlong Yuan
    Huiyun Tan
    Jing Pan
    Liqiang Mai
    Fan Xia
    Journal of Materials Science & Technology, 2022, 121 (26) : 80 - 92