共 42 条
Gearbox Fault Diagnosis Based on Refined Time-Shift Multiscale Reverse Dispersion Entropy and Optimised Support Vector Machine
被引:5
作者:
Wang, Xiang
[1
]
Jiang, Han
[2
]
机构:
[1] Nanjing Inst Technol, Sch Energy & Power Engn, Nanjing 211167, Peoples R China
[2] Nanjing Inst Technol, Sch Elect Engn, Nanjing 211167, Peoples R China
来源:
关键词:
data reduction;
fault diagnosis;
gearbox;
reverse dispersion entropy;
support vector machine;
DEEP BELIEF NETWORK;
FUZZY ENTROPY;
ROTATING MACHINERY;
INTELLIGENCE;
D O I:
10.3390/machines11060646
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
The fault diagnosis of a gearbox is crucial to ensure its safe operation. Entropy has become a common tool for measuring the complexity of time series. However, entropy bias may occur when the data are not long enough or the scale becomes larger. This paper proposes a gearbox fault diagnosis method based on Refined Time-Shifted Multiscale Reverse Dispersion Entropy (RTSMRDE), t-distributed Stochastic Neighbour Embedding (t-SNE), and the Sparrow Search Algorithm Support Vector Machine (SSA-SVM). First, the proposed RTSMRDE was used to calculate the multiscale fault features. By incorporating the refined time-shift method into Multiscale Reverse Dispersion Entropy (MRDE), errors that arose during the processing of complex time series could be effectively reduced. Second, the t-SNE algorithm was utilized to extract sensitive features from the multiscale, high-dimensional fault features. Finally, the low-dimensional feature matrix was input into SSA-SVM for fault diagnosis. Two gearbox experiments showed that the diagnostic model proposed in this paper had an accuracy rate of 100%, and the proposed model performed better than other methods in terms of diagnostic performance.
引用
收藏
页数:24
相关论文