Adsorption and sensing of dissolved gas molecules in transformer oil on Rh-doped MoTe2 monolayer: A first-principles study

被引:4
|
作者
Liu, Bo [1 ,2 ]
Yuan, Ye [3 ]
Gong, Yong [4 ]
Zhou, Rong [3 ]
Li, Peng [3 ]
Cui, Hao [5 ]
机构
[1] NARI Grp Corp, State Grid Elect Power Res Inst, Nanjing 211106, Peoples R China
[2] Wuhan NARI Ltd Co, State Grid Elect Power Res Inst, Wuhan 430074, Peoples R China
[3] Three Gorges Univ, Coll Elect Engn & New Energy, Yichang 443002, Peoples R China
[4] Gansu Hongxing Construct Engn Co LTD, Jiuquan 435008, Peoples R China
[5] Southwest Univ, Coll Artificial Intelligence, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Oil-immersed transformer; Rh-MoTe; 2; monolayer; DFT; DGA; MOS2; MONOLAYER; AU; PERFORMANCE; NANOSHEETS; SO2; DGA; O-3; PD;
D O I
10.1016/j.comptc.2023.114149
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Oil-immersed transformer plays a significant role in power systems, whose insulation failure will threaten the stable operation of the system, thus the requirements for its operational stability are higher. In this paper, the Rh-doped MoTe2 (Rh-MoTe2) monolayer is proposed for the detection of several typically dissolved gas molecules (CO, H2 and CH4) based on the first-principles density functional theory (DFT). It is found that the Rh dopant preferred to be adsorbed through the TMo site with maximum binding energy (Eb) of-3.43 eV. Then, the adsorption of Rh-MoTe2 on CO, H2 and CH4 molecules is investigated with adsorption energy (Ead). Furthermore, the band gaps of CO and H2 systems have significantly reduced, showing their excellent potential as resistance-type gas sensors; while CH4 is not suitable for detection due to the weak interaction. This study illustrates the physicochemical properties of Rh-MoTe2 monolayer and reveals its promising applications in dissolved gas analysis (DGA).
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Adsorption of gas molecules on Cu impurities embedded monolayer MoS2: A first-principles study
    Zhao, B.
    Li, C. Y.
    Liu, L. L.
    Zhou, B.
    Zhang, Q. K.
    Chen, Z. Q.
    Tang, Z.
    APPLIED SURFACE SCIENCE, 2016, 382 : 280 - 287
  • [32] Dissolved gas analysis in transformer oil using Pd catalyst decorated MoSe2 monolayer: A first-principles theory
    Cui, Hao
    Chen, Dachang
    Zhang, Ying
    Zhang, Xiaoxing
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2019, 20
  • [33] Adsorption and sensing of SF6 decomposition gas molecules by Ni-InN monolayer: A first-principles study
    Wu, Yunjian
    Li, Xing
    Duan, Yuxin
    Pan, Yi
    Yuan, Jiawei
    Zhang, Xiaoxing
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2025, 188
  • [34] A first-principles study of gas adsorption on monolayer AlN sheet
    Wang, Yusheng
    Song, Nahong
    Song, Xiaoyan
    Zhang, Tianjie
    Yang, Dapeng
    Li, Meng
    VACUUM, 2018, 147 : 18 - 23
  • [35] First-principles study of the monolayer MoSeTe for gas sensing applications
    Xu, Jing
    Wang, Yusheng
    Song, Nahong
    Luo, Shijun
    Wang, Fei
    CHEMICAL PHYSICS, 2022, 560
  • [36] Formaldehyde Molecules Adsorption on Zn Doped Monolayer MoS2: A First-Principles Calculation
    Li, Huili
    Fu, Ling
    He, Chaozheng
    Huo, Jinrong
    Yang, Houyong
    Xie, Tingyue
    Zhao, Guozheng
    Dong, Guohui
    FRONTIERS IN CHEMISTRY, 2021, 8
  • [37] First-principles study of the monolayer SnSSe for gas sensing applications
    Xu, Bin
    Qian, Cheng
    Zuo, Linxin
    Zhao, Wenxu
    Ma, Shanshan
    Zhang, Jing
    Wang, Yusheng
    Zhang, Minglei
    Yi, Lin
    CHEMICAL PHYSICS, 2024, 586
  • [38] Selective detection of SO2 in SF6 insulation devices by Rh-doped HfSe2 monolayer: a first-principles study
    Wang, Xu
    Liao, Yilong
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2019, 125 (07):
  • [39] Study on the adsorption mechanism of glucose in dual transition metal-decorated MoTe2: A first-principles calculation
    Wang, Sujuan
    Sun, Feifei
    Shen, Tao
    Liu, Xin
    Feng, Yue
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2025, 190
  • [40] Markedly different adsorption behaviors of gas molecules on defective monolayer MoS2: a first-principles study
    Li, Hongxing
    Huang, Min
    Cao, Gengyu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (22) : 15110 - 15117