Mn-Ce Catalysts/LDPC Modified by Mo for Improving NH3-SCR Performance and SO2 Resistance at Low Temperature

被引:2
|
作者
Zhou, Tao [1 ]
Jin, Jiang [1 ]
Zhang, Hua [1 ]
机构
[1] Nanjing Tech Univ, Coll Mat Sci & Engn, Nanjing 211816, Peoples R China
关键词
metal oxide catalyst; NH3-SCR; dust removal; denitrification; SELECTIVE CATALYTIC-REDUCTION; V2O5-WO3/TIO2; CATALYST; FLUE-GAS; NOX; NH3; SCR; REMOVAL; TOLERANCE; FILTER; DECOMPOSITION;
D O I
10.3390/met13050938
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Mn-Ce catalysts modified by Mo were loaded on low-density porous ceramics (LDPC) for simultaneous denitrification and dust removal. The Mn-Ce-Mo catalyst on LDPC had nearly 99% NOx conversion efficiency from 120 degrees C to 200 degrees C and still maintained more than 90% NOx conversion efficiency when the filtration velocity reached to 4 m/min. Mn-Ce-Mo catalysts/LDPC not only exhibited excellent catalytic performance at low temperature, they also exhibited good resistance to H2O and SO2. The NOx conversion efficiency remained above 89% at 160 degrees C when the flue gas contained 100 ppm SO2 and 7 vol.% H2O. The analysis of NH3-TPD and XPS confirmed that Mn2Ce1Ox catalysts modified with Mo had the stronger surface acidity and more adsorbed oxygen, leading to higher NH3-SCR activity and better resistance to SO2 and H2O.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] SO2 and Pb Poisoning and Regeneration of Mn-Ce/TiO2 Catalysts for NH3-SCR at Low Temperature
    Yan D.
    Chen Z.
    Yu Y.
    Ai S.
    Li J.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2022, 42 (19): : 7143 - 7149
  • [2] Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance
    Wang, Fumei
    Shen, Boxiong
    Zhu, Shaowen
    Wang, Zhi
    FUEL, 2019, 249 : 54 - 60
  • [3] Catalytic performance over Mn-Ce catalysts for NH3-SCR of NO at low temperature: Different zeolite supports
    Chen, Lin
    Ren, Shan
    Liu, Lian
    Su, Buxin
    Yang, Jie
    Chen, Zhichao
    Wang, Mingming
    Liu, Qingcai
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (02):
  • [4] V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO
    Jiang, Lijun
    Liu, Qingcai
    Ran, Guangjing
    Kong, Ming
    Ren, Shan
    Yang, Jian
    Li, Jiangling
    CHEMICAL ENGINEERING JOURNAL, 2019, 370 (810-821) : 810 - 821
  • [5] Performance of Mn-Ce catalysts supported on different zeolites in the NH3-SCR of NOx
    Huang, Zeng-Bin
    Li, Cui-Qing
    Wang, Zhen
    Xu, Sheng-Mei
    Feng, Ling-Bo
    Wang, Hong
    Song, Yong-Ji
    Zhang, Wei
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2016, 44 (11): : 1388 - 1393
  • [6] La Modified Fe–Mn/TiO2 Catalysts to Improve SO2 Resistance for NH3-SCR at Low-Temperature
    Xinxin Hou
    Hongping Chen
    Yinghua Liang
    Yonglin Wei
    Zeqing Li
    Catalysis Surveys from Asia, 2020, 24 : 291 - 299
  • [7] Lead poisoning and regeneration of Mn-Ce/TiO2 catalysts for NH3-SCR of NOx at low temperature
    Yan D.-J.
    Guo T.
    Yu Y.
    Chen Z.-H.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2021, 49 (01): : 113 - 120
  • [8] Improvement of the activity and SO2 tolerance of Sb-modified Mn/PG catalysts for NH3-SCR at a low temperature
    Xianlong Zhang
    Shuangshuang Lv
    Xincheng Zhang
    Kesong Xiao
    Xueping Wu
    Journal of Environmental Sciences, 2021, (03) : 1 - 15
  • [9] Improvement of the activity and SO2 tolerance of Sb-modified Mn/PG catalysts for NH3-SCR at a low temperature
    Zhang, Xianlong
    Lv, Shuangshuang
    Zhang, Xincheng
    Xiao, Kesong
    Wu, Xueping
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2021, 101 : 1 - 15
  • [10] La Modified Fe-Mn/TiO2 Catalysts to Improve SO2 Resistance for NH3-SCR at Low-Temperature
    Hou, Xinxin
    Chen, Hongping
    Liang, Yinghua
    Wei, Yonglin
    Li, Zeqing
    CATALYSIS SURVEYS FROM ASIA, 2020, 24 (04) : 291 - 299