Conformation Flipping of Asymmetric Nonfullerene Acceptors Enabling High-Performance Organic Solar Cells with 77% Fill Factors

被引:7
|
作者
Zhu, Jintao [1 ,2 ]
Zhang, Zhuohan [1 ]
Lan, Ai [1 ]
Zhou, Jialing [3 ]
Lv, Yifan [1 ]
Lu, Hong [1 ]
Zhou, Erjun [2 ,3 ]
Do, Hainam [1 ]
Chen, Zhi-Kuan [4 ,5 ,6 ]
Chen, Fei [4 ,5 ,6 ]
机构
[1] Univ Nottingham Ningbo China, Dept Chem & Environm Engn, Ningbo 315100, Peoples R China
[2] Chinese Acad Sci, Natl Ctr Nanosci & Technol, CAS Key Lab Nanosyst & Hierarch Fabricat, Ctr Excellence Nanosci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] Northwestern Polytech Univ, Key Lab Flexible Elect Zhejiang Prov, Ningbo Inst, Ningbo 315100, Peoples R China
[5] Univ Nottingham Ningbo China, New Mat Inst, Ningbo 315100, Peoples R China
[6] Univ Nottingham Ningbo China, Key Lab Carbonaceous Waste Proc & Proc Intensifica, Ningbo 315100, Peoples R China
基金
中国国家自然科学基金;
关键词
thiophene [3; 2-b] pyrrole; asymmetric nonfullerene acceptors; organic solar cells; NON-FULLERENE ACCEPTORS; EFFICIENT; MORPHOLOGY; STATES; DONOR;
D O I
10.1002/solr.202300171
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Considerable progress on high-performance organic solar cells (OSCs) has been achieved in the past due to the rapid development of nonfullerene acceptors (NFAs). Typically, two kinds of methods have been employed to manipulate energy levels and aggregation of NFAs, i.e., molecular engineering on alkyl side chains and modification of the heterocyclic rings in the backbone. Herein, a novel asymmetric thiophene[3,2-b] pyrrole (TP)-based NFA with flipped molecular conformation, named as PTBTT-4F, is designed and synthesized. The introduction of the pyrrole ring in the novel NFA would not only afford extra reaction sites for side chain modification, but also induce substantial intramolecular charge transfer, thus leading to elevated energy levels of the NFA and thereby lower energy loss of the OSCs. When pairing with polymer donor PBDB-TF to fabricate OSCs, concurrent improvement in open-circuit voltage, short-circuit current (J(SC)), and fill factor (FF) is realized, which delivers an outstanding power conversion efficiency (PCE) of 14.49%. Benefitting from effective molecular stacking and optimized phase separation induced by molecular conformation variation, asymmetric PTBTT-4F fabricated OSCs exhibit much higher J(SC)s and FFs than the symmetrical PTBTP-4F devices.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] 2D Side-Chain Engineered Asymmetric Acceptors Enabling Over 14% Efficiency and 75% Fill Factor Stable Organic Solar Cells
    Cao, Jinru
    Wang, Hongtao
    Qu, Shenya
    Yu, Jiangsheng
    Yang, Linqiang
    Zhang, Zhuohan
    Du, Fuqiang
    Tang, Weihua
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (52)
  • [22] Asymmetrical side-chain engineering of small-molecule acceptors enable high-performance nonfullerene organic solar cells
    Kan, Bin
    Chen, Xuebin
    Gao, Ke
    Zhang, Ming
    Lin, Francis
    Peng, Xiaobin
    Liu, Feng
    Jen, Alex K-Y.
    NANO ENERGY, 2020, 67 (67)
  • [23] Non-Fused π-Extension of Endcaps of Small Molecular Acceptors Enabling High-Performance Organic Solar Cells
    Feng, Fan
    Hu, Zunyuan
    Wang, Jianxiao
    Wang, Pengchao
    Sun, Cheng
    Wang, Xiaoning
    Bi, Fuzhen
    Li, Yonghai
    Bao, Xichang
    CHEMSUSCHEM, 2024, 17 (21)
  • [24] Recent advances of polymer acceptors for high-performance organic solar cells
    Zhao, Congcong
    Wang, Jiuxing
    Jiao, Jiqing
    Huang, Linjun
    Tang, Jianguo
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (01) : 28 - 43
  • [25] Chalcogen-Fused Perylene Diimides-Based Nonfullerene Acceptors for High-Performance Organic Solar Cells: Insight into the Effect of O, S, and Se
    Li, Gang
    Wang, Shuaihua
    Li, Dandan
    Liu, Tao
    Yan, Cenqi
    Li, Jiewei
    Yang, Wenbin
    Luo, Zhenghui
    Ma, Ruijie
    Wang, Xinyu
    Cui, Guanwei
    Wang, Yilin
    Ma, Wei
    Huo, Lijun
    Chen, Kai
    Yan, He
    Tang, Bo
    SOLAR RRL, 2020, 4 (03):
  • [26] A Nonfullerene Acceptor with Alkylthio- and Dimethoxy-Thiophene-Groups Yielding High-Performance Ternary Organic Solar Cells
    Zeng, Anping
    Pan, Mingao
    Lin, Baojun
    Lau, Tsz-Ki
    Qin, Minchao
    Li, Kun
    Ma, Wei
    Lu, Xinhui
    Zhan, Chuanlang
    Yan, He
    SOLAR RRL, 2020, 4 (01)
  • [27] Asymmetric Non-Fullerene Small-Molecule Acceptors toward High-Performance Organic Solar Cells
    Li, Dongxu
    Sun, Chaoyuan
    Yan, Tengfei
    Yuan, Jun
    Zou, Yingping
    ACS CENTRAL SCIENCE, 2021, 7 (11) : 1787 - 1797
  • [28] Nonfullerene/Fullerene Acceptor Blend with a Tunable Energy State for High-Performance Ternary Organic Solar Cells
    Kim, Min
    Lee, Jaewon
    Sin, Dong Hun
    Lee, Hansol
    Woo, Han Young
    Cho, Kilwon
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (30) : 25570 - 25579
  • [29] Non-fullerene small molecule electron acceptors for high-performance organic solar cells
    Lin, Hao
    Wang, Qiang
    JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (04) : 990 - 1016
  • [30] Benzotriazole-based asymmetric nonfullerene acceptors with A-D-A1-A2 type structure for organic solar cells
    Wu, Jiang
    Zhou, Jialing
    Guo, Qing
    Guo, Qiang
    Tang, Ailing
    Zhou, Erjun
    CHEMICAL ENGINEERING JOURNAL, 2023, 473