Framework and metrics for the clinical use and implementation of artificial intelligence algorithms into endoscopy practice: recommendations from the American Society for Gastrointestinal Endoscopy Artificial Intelligence Task Force

被引:20
作者
Parasa, Sravanthi [1 ,7 ]
Repici, Alessandro [2 ]
Berzin, Tyler [3 ]
Leggett, Cadman [4 ]
Gross, Seth A. [5 ]
Sharma, Prateek [6 ]
机构
[1] Swedish Med Ctr, Dept Gastroenterol, Seattle, WA USA
[2] Human Res Hosp & Univ, Digest Endoscopy Dept, Milan, Italy
[3] Harvard Med Sch, Div Gastroenterol, Beth Israel Deaconess Med Ctr, Boston, MA USA
[4] Mayo Clin, Dept Gastroenterol & Hepatol, Rochester, MN USA
[5] NYU Langone, Div Gastroenterol & Hepatol, New York, NY USA
[6] Univ Kansas, Gastroenterol Hepatol & Motil Div, Med Ctr, Kansas City, KS USA
[7] Swedish Med Ctr, Dept Gastroenterol, 1221 Madison St,Ste 1220, Seattle, WA 98104 USA
关键词
D O I
10.1016/j.gie.2022.10.016
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
In the past few years, we have seen a surge in the development of relevant artificial intelligence (AI) algorithms addressing a variety of needs in GI endoscopy. To accept AI algorithms into clinical practice, their effectiveness, clinical value, and reliability need to be rigorously assessed. In this article, we provide a guiding framework for all stakeholders in the endoscopy AI ecosystem regarding the standards, metrics, and evaluation methods for emerging and existing AI applications to aid in their clinical adoption and implementation. We also provide guidance and best practices for evaluation of AI technologies as they mature in the endoscopy space. Note, this is a living document; periodic updates will be published as progress is made and applications evolve in the field of AI in endoscopy.
引用
收藏
页码:815 / +
页数:11
相关论文
共 15 条
  • [1] Deep Learning with Differential Privacy
    Abadi, Martin
    Chu, Andy
    Goodfellow, Ian
    McMahan, H. Brendan
    Mironov, Ilya
    Talwar, Kunal
    Zhang, Li
    [J]. CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, : 308 - 318
  • [2] Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric
    Boughorbel, Sabri
    Jarray, Fethi
    El-Anbari, Mohammed
    [J]. PLOS ONE, 2017, 12 (06):
  • [3] Computer-aided detection-assisted colonoscopy: classification and relevance of false positives
    Hassan, Cesare
    Badalamenti, Matteo
    Maselli, Roberta
    Correale, Loredana
    Iannone, Andrea
    Radaelli, Franco
    Rondonotti, Emanuele
    Ferrara, Elisa
    Spadaccini, Marco
    Alkandari, Asma
    Fugazza, Alessandro
    Anderloni, Andrea
    Galtieri, Piera Alessia
    Pellegatta, Gaia
    Carrara, Silvia
    Di Leo, Milena
    Craviotto, Vincenzo
    Lamonaca, Laura
    Lorenzetti, Roberto
    Andrealli, Alida
    Antonelli, Giulio
    Wallace, Michael
    Sharma, Prateek
    Roesch, Thomas
    Repici, Alessandro
    [J]. GASTROINTESTINAL ENDOSCOPY, 2020, 92 (04) : 900 - +
  • [4] The practical implementation of artificial intelligence technologies in medicine
    He, Jianxing
    Baxter, Sally L.
    Xu, Jie
    Xu, Jiming
    Zhou, Xingtao
    Zhang, Kang
    [J]. NATURE MEDICINE, 2019, 25 (01) : 30 - 36
  • [5] On evaluation metrics for medical applications of artificial intelligence
    Hicks, Steven A.
    Struemke, Inga
    Thambawita, Vajira
    Hammou, Malek
    Riegler, Michael A.
    Halvorsen, Pal
    Parasa, Sravanthi
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [6] Benchmarking definitions of false-positive alerts during computer-aided polyp detection in colonoscopy
    Holzwanger, Erik A.
    Bilal, Mohammad
    Glissen Brown, Jeremy R.
    Singh, Shailendra
    Becq, Aymeric
    Ernest-Suarez, Kenneth
    Berzin, Tyler M.
    [J]. ENDOSCOPY, 2021, 53 (09) : 937 - 940
  • [7] To err is not entirely human: Complex technology and user cognition
    Horsky, J
    Zhang, JJ
    Patel, VL
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2005, 38 (04) : 264 - 266
  • [8] Liu XX, 2020, LANCET DIGIT HEALTH, V2, pE537, DOI [10.1136/bmj.m3164, 10.1016/S2589-7500(20)30218-1, 10.1016/S2589-7500(20)30219-3]
  • [9] Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension
    Liu, Xiaoxuan
    Rivera, Samantha Cruz
    Moher, David
    Calvert, Melanie J.
    Denniston, Alastair K.
    [J]. NATURE MEDICINE, 2020, 26 (09) : 1364 - 1374
  • [10] Reinke A, 2021, ARXIV PREPRINT ARXIV, p2104.05642