Distinguishing a planetary transit from false positives: a Transformer-based classification for planetary transit signals

被引:7
作者
Salinas, Helem [1 ]
Pichara, Karim [1 ]
Brahm, Rafael [2 ,3 ,4 ]
Perez-Galarce, Francisco [1 ]
Mery, Domingo [1 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Ingenieria, Dept Ciencias Computac, Santiago 7820436, Chile
[2] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Av Diagonal Torres 2640, Santiago, Chile
[3] Millennium Inst Astrophys, Ave Vicuna Mackenna 4860, Santiago 7820436, Chile
[4] Data Observ Fdn, Santiago, Chile
关键词
methods: data analysis; planets and satellites: detection; IDENTIFYING EXOPLANETS; PERIODIC TRANSITS; CANDIDATES; ALGORITHM; SAMPLE; CATALOG; SEARCH;
D O I
10.1093/mnras/stad1173
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Current space-based missions, such as the Transiting Exoplanet Survey Satellite (TESS), provide a large database of light curves that must be analysed efficiently and systematically. In recent years, deep learning (DL) methods, particularly convolutional neural networks (CNN), have been used to classify transit signals of candidate exoplanets automatically. However, CNNs have some drawbacks; for example, they require many layers to capture dependencies on sequential data, such as light curves, making the network so large that it eventually becomes impractical. The self-attention mechanism is a DL technique that attempts to mimic the action of selectively focusing on some relevant things while ignoring others. Models, such as the Transformer architecture, were recently proposed for sequential data with successful results. Based on these successful models, we present a new architecture for the automatic classification of transit signals. Our proposed architecture is designed to capture the most significant features of a transit signal and stellar parameters through the self-attention mechanism. In addition to model prediction, we take advantage of attention map inspection, obtaining a more interpretable DL approach. Thus, we can identify the relevance of each element to differentiate a transit signal from false positives, simplifying the manual examination of candidates. We show that our architecture achieves competitive results concerning the CNNs applied for recognizing exoplanetary transit signals in data from the TESS telescope. Based on these results, we demonstrate that applying this state-of-the-art DL model to light curves can be a powerful technique for transit signal detection while offering a level of interpretability.
引用
收藏
页码:3201 / 3216
页数:16
相关论文
共 69 条
[1]  
Allam T Jr, 2023, Arxiv, DOI arXiv:2105.06178
[2]  
[Anonymous], 2015, ASTRON ASTROPHYS
[3]   Scientific Domain Knowledge Improves Exoplanet Transit Classification with Deep Learning [J].
Ansdell, Megan ;
Ioannou, Yani ;
Osborn, Hugh P. ;
Sasdelli, Michele ;
Smith, Jeffrey C. ;
Caldwell, Douglas ;
Jenkins, Jon M. ;
Raissi, Chedy ;
Angerhausen, Daniel .
ASTROPHYSICAL JOURNAL LETTERS, 2018, 869 (01)
[4]   Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2 [J].
Armstrong, D. J. ;
Pollacco, D. ;
Santerne, A. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 465 (03) :2634-2642
[5]   Automatic vetting of planet candidates from ground-based surveys: machine learning with NGTS [J].
Armstrong, David J. ;
Gunther, Maximilian N. ;
McCormac, James ;
Smith, Alexis M. S. ;
Bayliss, Daniel ;
Bouchy, Francois ;
Burleigh, Matthew R. ;
Casewell, Sarah ;
Eigmueller, Philipp ;
Gillen, Edward ;
Goad, Michael R. ;
Hodgkin, Simon T. ;
Jenkins, James S. ;
Louden, Tom ;
Metrailler, Lionel ;
Pollacco, Don ;
Poppenhaeger, Katja ;
Queloz, Didier ;
Raynard, Liam ;
Rauer, Heike ;
Udry, Stephane ;
Walker, Simon. R. ;
Watson, Christopher A. ;
West, Richard G. ;
Wheatley, Peter J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (03) :4225-4237
[6]   The CoRoT satellite in flight: description and performance [J].
Auvergne, M. ;
Bodin, P. ;
Boisnard, L. ;
Buey, J. -T. ;
Chaintreuil, S. ;
Epstein, G. ;
Jouret, M. ;
Lam-Trong, T. ;
Levacher, P. ;
Magnan, A. ;
Perez, R. ;
Plasson, P. ;
Plesseria, J. ;
Peter, G. ;
Steller, M. ;
Tiphene, D. ;
Baglin, A. ;
Agogue, P. ;
Appourchaux, T. ;
Barbet, D. ;
Beaufort, T. ;
Bellenger, R. ;
Berlin, R. ;
Bernardi, P. ;
Blouin, D. ;
Boumier, P. ;
Bonneau, F. ;
Briet, R. ;
Butler, B. ;
Cautain, R. ;
Chiavassa, F. ;
Costes, V. ;
Cuvilho, J. ;
Cunha-Parro, V. ;
Fialho, F. De Oliveira ;
Decaudin, M. ;
Defise, J. -M. ;
Djalal, S. ;
Docclo, A. ;
Drummond, R. ;
Dupuis, O. ;
Exil, G. ;
Faure, C. ;
Gaboriaud, A. ;
Gamet, P. ;
Gavalda, P. ;
Grolleau, E. ;
Gueguen, L. ;
Guivarc'h, V. ;
Guterman, P. .
ASTRONOMY & ASTROPHYSICS, 2009, 506 (01) :411-424
[7]  
Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, 10.48550/arXiv.1409.0473,1409.0473, DOI 10.48550/ARXIV.1409.0473,1409.0473]
[8]   PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA [J].
Batalha, Natalie M. ;
Rowe, Jason F. ;
Bryson, Stephen T. ;
Barclay, Thomas ;
Burke, Christopher J. ;
Caldwell, Douglas A. ;
Christiansen, Jessie L. ;
Mullally, Fergal ;
Thompson, Susan E. ;
Brown, Timothy M. ;
Dupree, Andrea K. ;
Fabrycky, Daniel C. ;
Ford, Eric B. ;
Fortney, Jonathan J. ;
Gilliland, Ronald L. ;
Isaacson, Howard ;
Latham, David W. ;
Marcy, Geoffrey W. ;
Quinn, Samuel N. ;
Ragozzine, Darin ;
Shporer, Avi ;
Borucki, William J. ;
Ciardi, David R. ;
Gautier, Thomas N., III ;
Haas, Michael R. ;
Jenkins, Jon M. ;
Koch, David G. ;
Lissauer, Jack J. ;
Rapin, William ;
Basri, Gibor S. ;
Boss, Alan P. ;
Buchhave, Lars A. ;
Carter, Joshua A. ;
Charbonneau, David ;
Christensen-Dalsgaard, Joergen ;
Clarke, Bruce D. ;
Cochran, William D. ;
Demory, Brice-Olivier ;
Desert, Jean-Michel ;
Devore, Edna ;
Doyle, Laurance R. ;
Esquerdo, Gilbert A. ;
Everett, Mark ;
Fressin, Francois ;
Geary, John C. ;
Girouard, Forrest R. ;
Gould, Alan ;
Hall, Jennifer R. ;
Holman, Matthew J. ;
Howard, Andrew W. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2013, 204 (02)
[9]  
Borucki W.J., 2010, SCIENCE, V327, P977, DOI DOI 10.1126/SCIENCE.1185402
[10]  
Bowles M., 2021, arXiv