Risk Prediction and Machine Learning A Case-Based Overview

被引:4
作者
Balczewski, Emily A. A. [1 ,2 ]
Cao, Jie [2 ]
Singh, Karandeep [3 ,4 ,5 ,6 ]
机构
[1] Univ Michigan, Med Sch, Med Scientist Training Program, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Med Sch, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Med Sch, Dept Learning Hlth Sci, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Med Sch, Dept Internal Med, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Sch Informat, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Learning Hlth Sci, 1161H NIB,300 N Ingalls St, Ann Arbor, MI 48109 USA
来源
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY | 2023年 / 18卷 / 04期
关键词
artificial intelligence and machine learning in nephrology series; risk prediction; machine learning;
D O I
10.2215/CJN.0000000000000083
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:524 / 526
页数:3
相关论文
共 50 条
[31]   Prediction of high-risk pregnancy based on machine learning algorithms [J].
Pi, Xinyu ;
Wang, Junzhi ;
Chu, Liangliang ;
Zhang, Guochun ;
Zhang, Wenli .
SCIENTIFIC REPORTS, 2025, 15 (01)
[32]   Machine Learning-Based Risk Prediction of Discharge Status for Sepsis [J].
Cai, Kaida ;
Lou, Yuqing ;
Wang, Zhengyan ;
Yang, Xiaofang ;
Zhao, Xin .
ENTROPY, 2024, 26 (08)
[33]   Early Stage Diabetes Risk Prediction via Machine Learning [J].
Abu Al-Haija, Qasem ;
Smadi, Mahmoud ;
Al-Bataineh, Osama M. .
PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR 2021), 2022, 417 :451-461
[34]   Comparative Analysis of Machine Learning Algorithms for CKD Risk Prediction [J].
Yang, Weilin ;
Ahmed, Nasim ;
Barczak, Andre L. C. .
IEEE ACCESS, 2024, 12 :171205-171220
[35]   Machine learning for mortality risk prediction with changing patient demographics [J].
Wainwright, Richard ;
Shenfield, Alex .
2023 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, CIBCB, 2023, :116-122
[36]   Cardiovascular Disease Risk Prediction with Supervised Machine Learning Techniques [J].
Dritsas, Elias ;
Alexiou, Sotiris ;
Moustakas, Konstantinos .
ICT4AWE: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES FOR AGEING WELL AND E-HEALTH, 2022, :315-321
[37]   A prediction study on the occurrence risk of heart disease in older hypertensive patients based on machine learning [J].
Si, Fei ;
Liu, Qian ;
Yu, Jing .
BMC GERIATRICS, 2025, 25 (01)
[38]   Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques [J].
Li, Jun ;
Chen, Qingguang ;
Hu, Xiaojuan ;
Yuan, Pei ;
Cui, Longtao ;
Tu, Liping ;
Cui, Ji ;
Huang, Jingbin ;
Jiang, Tao ;
Ma, Xuxiang ;
Yao, Xinghua ;
Zhou, Changle ;
Lu, Hao ;
Xu, Jiatuo .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2021, 149
[39]   Cervical Cancer Risk Prediction Model and Analysis of Risk Factors based on Machine Learning [J].
Yang, Wenying ;
Gou, Xin ;
Xu, Tongqing ;
Yi, Xiping ;
Jiang, Maohong .
ICBBT 2019: 2019 11TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL TECHNOLOGY, 2019, :50-54
[40]   Prediction Model of Ischemic Stroke Based on Machine Learning [J].
Zhang, Zhijie ;
Zou, Zhihong .
JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 32 (05)