Symmetric stable processes on amenable groups

被引:0
作者
Avraham-Re'em, Nachi [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-9190401 Jerusalem, Israel
关键词
stable process; stationary process; spectral representation; non-singular group action; amenable group; ERGODIC PROPERTIES; RANDOM-FIELDS; MAHARAM EXTENSIONS; BERNOULLI ACTIONS; K-PROPERTY; REPRESENTATION; EQUIVALENCE; THEOREMS; NULL;
D O I
10.4064/sm220924-19-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if G is a countable amenable group, then every stationary non-Gaussian symmetric alpha-stable (S alpha S) process indexed by G is ergodic if and only if it is weakly mixing, and it is ergodic if and only if its Rosinski minimal spectral representation is null. This extends previous results for Zd, and answers a question of P. Roy on discrete nilpotent groups in the range of all countable amenable groups. As a result, we construct on the Heisenberg group and on many Abelian groups, for all alpha is an element of (0, 2), stationary S alpha S processes that are weakly mixing but not strongly mixing.
引用
收藏
页码:187 / 224
页数:38
相关论文
共 62 条
  • [51] Stationary symmetric α-stable discrete parameter random fields
    Roy, Parthanil
    Samorodnitsky, Gennady
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2008, 21 (01) : 212 - 233
  • [52] RYLL-NARDZEWSKI C., 1967, Contributions to Probability Theory, VII, P55
  • [53] Null flows, positive flows and the structure of stationary symmetric stable processes
    Samorodnitsky, G
    [J]. ANNALS OF PROBABILITY, 2005, 33 (05) : 1782 - 1803
  • [54] Samorodnitsky G., 1994, STABLE NONGAUSSIAN R, DOI [10.1201/9780203738818, DOI 10.1201/9780203738818]
  • [55] Samorodnitsky G, 2016, SPRINGER SER OPER RE, P1, DOI 10.1007/978-3-319-45575-4_1
  • [56] STABLE RANDOM FIELDS INDEXED BY FINITELY GENERATED FREE GROUPS
    Sarkar, Sourav
    Roy, Parthanil
    [J]. ANNALS OF PROBABILITY, 2018, 46 (05) : 2680 - 2714
  • [57] SOME STRUCTURE THEOREMS FOR SYMMETRIC STABLE LAWS
    SCHILDER, M
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (02): : 412 - &
  • [58] STABLE MIXED MOVING AVERAGES
    SURGAILIS, D
    ROSINSKI, J
    MANDREKAR, V
    CAMBANIS, S
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1993, 97 (04) : 543 - 558
  • [59] Takahashi W., 1971, KODAI MATH SEM REP, V23, P131
  • [60] BERNOULLI ACTIONS OF TYPE III1 AND L2-COHOMOLOGY
    Vaes, Stefaan
    Wahl, Jonas
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2018, 28 (02) : 518 - 562