Symmetric stable processes on amenable groups

被引:0
作者
Avraham-Re'em, Nachi [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-9190401 Jerusalem, Israel
关键词
stable process; stationary process; spectral representation; non-singular group action; amenable group; ERGODIC PROPERTIES; RANDOM-FIELDS; MAHARAM EXTENSIONS; BERNOULLI ACTIONS; K-PROPERTY; REPRESENTATION; EQUIVALENCE; THEOREMS; NULL;
D O I
10.4064/sm220924-19-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if G is a countable amenable group, then every stationary non-Gaussian symmetric alpha-stable (S alpha S) process indexed by G is ergodic if and only if it is weakly mixing, and it is ergodic if and only if its Rosinski minimal spectral representation is null. This extends previous results for Zd, and answers a question of P. Roy on discrete nilpotent groups in the range of all countable amenable groups. As a result, we construct on the Heisenberg group and on many Abelian groups, for all alpha is an element of (0, 2), stationary S alpha S processes that are weakly mixing but not strongly mixing.
引用
收藏
页码:187 / 224
页数:38
相关论文
共 62 条
  • [1] Aaronson, 1997, INTRO INFINITE ERGOD
  • [2] Bekka B, 2008, NEW MATH MONOGR, P1, DOI 10.1017/CBO9780511542749
  • [3] BEKKA B., 2020, Math. Surveys Monogr., V250
  • [4] Berglund J.F., 1967, LECT NOTES MATH, V42
  • [5] A LARGE SAMPLE TEST FOR THE LENGTH OF MEMORY OF STATIONARY SYMMETRIC STABLE RANDOM FIELDS VIA NONSINGULAR Zd-ACTIONS
    Bhattacharya, Ayan
    Roy, Parthanil
    [J]. JOURNAL OF APPLIED PROBABILITY, 2018, 55 (01) : 179 - 195
  • [6] Bjorklund M., 2018, ARXIV
  • [7] Ergodicity and type of nonsingular Bernoulli actions
    Bjorklund, Michael
    Kosloff, Zemer
    Vaes, Stefaan
    [J]. INVENTIONES MATHEMATICAE, 2021, 224 (02) : 573 - 625
  • [8] BURCKEL R. B., 1970, WEAKLY ALMOST PERIOD
  • [9] ERGODIC PROPERTIES OF STATIONARY STABLE PROCESSES
    CAMBANIS, S
    HARDIN, CD
    WERON, A
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1987, 24 (01) : 1 - 18
  • [10] K-property for Maharam extensions of non-singular Bernoulli and Markov shifts
    Danilenko, Alexandre I.
    Lemanczyk, Mariusz
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 (12) : 3292 - 3321