Topological invariants in quantum walks

被引:3
作者
Grudka, Andrzej [1 ]
Karczewski, Marcin [2 ]
Kurzynski, Pawel [1 ]
Wojcik, Jan [3 ]
Wojcik, Antoni [1 ]
机构
[1] Adam Mickiewicz Univ, Inst Spintron & Quantum Informat, Fac Phys, PL-61614 Poznan, Poland
[2] Univ Gdansk, Int Ctr Theory Quantum Technol, PL-80309 Gdansk, Poland
[3] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland
关键词
PHASES; MATTER;
D O I
10.1103/PhysRevA.107.032201
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Discrete-time quantum walks (DTQWs) provide a convenient platform for a realization of many topological phases in noninteracting systems. They often offer more possibilities than systems with a static Hamiltonian. Nevertheless, researchers are still looking for DTQW symmetries protecting topological phases and for definitions of appropriate topological invariants. Although the majority of DTQW studies on this topic focus on the so-called split-step quantum walk, two distinct topological phases can be observed in more basic models. Here we infer topological properties of the basic DTQWs directly from the mapping of the Brillouin zone to the Bloch Hamiltonian. We show that for translation-symmetric systems they can be characterized by a homotopy relative to special points. We also propose a topological invariant corresponding to this concept. This invariant indicates the number of edge states at the interface between two distinct phases.
引用
收藏
页数:7
相关论文
共 62 条
  • [1] Chiral symmetry and bulk-boundary correspondence in periodically driven one-dimensional systems
    Asboth, J. K.
    Tarasinski, B.
    Delplace, P.
    [J]. PHYSICAL REVIEW B, 2014, 90 (12):
  • [2] Symmetries, topological phases, and bound states in the one-dimensional quantum walk
    Asboth, J. K.
    [J]. PHYSICAL REVIEW B, 2012, 86 (19):
  • [3] Edge-state-enhanced transport in a two-dimensional quantum walk
    Asboth, Janos K.
    Edge, Jonathan M.
    [J]. PHYSICAL REVIEW A, 2015, 91 (02):
  • [4] Bulk-boundary correspondence for chiral symmetric quantum walks
    Asboth, Janos K.
    Obuse, Hideaki
    [J]. PHYSICAL REVIEW B, 2013, 88 (12)
  • [5] Measuring topological invariants in disordered discrete-time quantum walks
    Barkhofen, Sonja
    Nitsche, Thomas
    Elster, Fabian
    Lorz, Lennart
    Gabris, Aurel
    Jex, Igor
    Silberhorn, Christine
    [J]. PHYSICAL REVIEW A, 2017, 96 (03)
  • [6] Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons
    Cardano, Filippo
    D'Errico, Alessio
    Dauphin, Alexandre
    Maffei, Maria
    Piccirillo, Bruno
    de Lisio, Corrado
    De Filippis, Giulio
    Cataudella, Vittorio
    Santamato, Enrico
    Marrucci, Lorenzo
    Lewenstein, Maciej
    Massignan, Pietro
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [7] Statistical moments of quantum-walk dynamics reveal topological quantum transitions
    Cardano, Filippo
    Maffei, Maria
    Massa, Francesco
    Piccirillo, Bruno
    de Lisio, Corrado
    De Filippis, Giulio
    Cataudella, Vittorio
    Santamato, Enrico
    Marrucci, Lorenzo
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [8] Quantum walks and wavepacket dynamics on a lattice with twisted photons
    Cardano, Filippo
    Massa, Francesco
    Qassim, Hammam
    Karimi, Ebrahim
    Slussarenko, Sergei
    Paparo, Domenico
    de Lisio, Corrado
    Sciarrino, Fabio
    Santamato, Enrico
    Boyd, Robert W.
    Marrucci, Lorenzo
    [J]. SCIENCE ADVANCES, 2015, 1 (02):
  • [9] Quantum Walks: Schur Functions Meet Symmetry Protected Topological Phases
    Cedzich, C.
    Geib, T.
    Grunbaum, F. A.
    Velazquez, L.
    Werner, A. H.
    Werner, R. F.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 389 (01) : 31 - 74
  • [10] Chiral Floquet Systems and Quantum Walks at Half-Period
    Cedzich, C.
    Geib, T.
    Werner, A. H.
    Werner, R. F.
    [J]. ANNALES HENRI POINCARE, 2021, 22 (02): : 375 - 413