Deep learning-based quantitative morphological study of anteroposterior digital radiographs of the lumbar spine

被引:0
作者
Chen, Zhizhen [1 ,2 ]
Wang, Wenqi [3 ]
Chen, Xiaofei [3 ]
Dong, Fuwen [3 ]
Cheng, Guohua [4 ]
He, Linyang [4 ]
Ma, Chunyu [2 ]
Yao, Hongyan [2 ]
Zhou, Sheng [2 ,5 ,6 ]
机构
[1] Gansu Prov Matern & Child care Hosp, Med Imaging Ctr, Lanzhou, Peoples R China
[2] Gansu Univ Chinese Med, Clin Med Coll 1, Lanzhou, Peoples R China
[3] Gansu Prov Hosp Tradit Chinese Med, Dept Radiol, Lanzhou, Peoples R China
[4] Hangzhou Jianpei Technol Co Ltd, Hangzhou, Peoples R China
[5] Gansu Prov Hosp, Dept Radiol, Lanzhou, Peoples R China
[6] Gansu Prov Hosp, Dept Radiol, Lanzhou 730013, Peoples R China
关键词
Deep learning; anteroposterior digital radiographs of lumbar spine; automatic measurement; morphological quantitative; INTERVERTEBRAL DISC HEIGHT; VERTEBRAL BODY;
D O I
10.21037/qims-22-540
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Morphological parameters of the lumbar spine are valuable in assessing lumbar spine diseases. However, manual measurement of lumbar morphological parameters is time-consuming. Deep learning has automatic quantitative and qualitative analysis capabilities. To develop a deep learning-based model for the automatic quantitative measurement of morphological parameters from anteroposterior digital radiographs of the lumbar spine and to evaluate its performance.Methods: This study used 1,368 anteroposterior digital radiographs of the lumbar spine to train a deep learning model to measure the quantitative morphological indicators, including L1 to L5 vertebral body height (VBH) and L1-L2 to L4-L5 intervertebral disc height (IDH). The means of the manual measurements by three radiologists were used as the reference standard. The parameters predicted by the model were analyzed against the manual measurements using paired t-tests. Percentage of Correct Key Points (PCK), intra-class correlation coefficient (ICC), Pearson correlation coefficient (r), mean absolute error (MAE), root mean square error (RMSE), and Bland-Altman plots were performed to assess the performance of the model.Results: Within the 3-mm distance threshold, the model had a PCK range of 99.77-99.46% for the L1 to L4 vertebrae and 77.37% for the L5 vertebrae. Except for VBH-L5 and IDH_L3-L4, IDH_L4-L5 (P<0.05), the estimated values of the model in the remaining parameters were not statistically significant compared with the reference standard (P>0.05). Except for VBH-L5 and IDH_L4-L5, the model showed good correlation and consistency with the reference standard (ICC =0.84-0.96, r=0.85-0.97, MAE =0.5-0.66, RMSE =0.66-0.95). The model outperformed other models (EfficientDet + Unet, EfficientDet + DarkPose, HRNet, and U-net) in predicting landmarks within a distance threshold of 1.5 to 5 mm.Conclusions: The model developed in this study can automatically measure the morphological parameters of the L1 to L4 vertebrae from anteroposterior digital radiographs of the lumbar spine. Its performance is close to the level of radiologists.
引用
收藏
页码:5385 / 5395
页数:14
相关论文
共 36 条
[1]   The Role of Vertebral Morphometry in the Pathogenesis of Degenerative Lumbar Spinal Stenosis [J].
Abbas, Janan ;
Peled, Natan ;
Hershkovitz, Israel ;
Hamoud, Kamal .
BIOMED RESEARCH INTERNATIONAL, 2021, 2021
[2]   Bone mineral density and intervertebral disc height in type 2 diabetes [J].
Agius, Rachel ;
Galea, Raymond ;
Fava, Stephen .
JOURNAL OF DIABETES AND ITS COMPLICATIONS, 2016, 30 (04) :644-650
[3]   Three-dimensional computed tomographic evaluation of lateral lumbar interbody fusion: morphometric change of intervertebral structure [J].
Akeda, Koji ;
Cheng, Kevin ;
Abarado, Edward ;
Takegami, Norihiko ;
Yamada, Junichi ;
Inoue, Nozomu ;
Masuda, Koichi ;
Sudo, Akihiro .
EUROPEAN SPINE JOURNAL, 2021, 30 (05) :1355-1364
[4]   Review on the Use of Artificial Intelligence in Spinal Diseases [J].
Azimi, Parisa ;
Yazdanian, Taravat ;
Benzel, Edward C. ;
Aghaei, Hossein Nayeb ;
Azhari, Shirzad ;
Sadeghi, Sohrab ;
Montazeri, Ali .
ASIAN SPINE JOURNAL, 2020, 14 (04) :543-571
[5]   Automatic Localization and Identification of Vertebrae in Spine CT via a Joint Learning Model with Deep Neural Networks [J].
Chen, Hao ;
Shen, Chiyao ;
Qin, Jing ;
Ni, Dong ;
Shi, Lin ;
Cheng, Jack C. Y. ;
Heng, Pheng-Ann .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT I, 2015, 9349 :515-522
[6]   Magnetic resonance morphometry of the adult normal lumbar intervertebral space [J].
Fyllos, Apostolos H. ;
Arvanitis, Dimitrios L. ;
Karantanas, Apostolos H. ;
Varitimidis, Sokratis E. ;
Hantes, Michael ;
Zibis, Aristeidis H. .
SURGICAL AND RADIOLOGIC ANATOMY, 2018, 40 (09) :1055-1061
[7]   Vertebral morphometry: current methods and recent advances [J].
Guglielmi, G. ;
Diacinti, D. ;
van Kuijk, C. ;
Aparisi, F. ;
Krestan, C. ;
Adams, J. E. ;
Link, T. M. .
EUROPEAN RADIOLOGY, 2008, 18 (07) :1484-1496
[8]   What low back pain is and why we need to pay attention [J].
Hartvigsen, Jan ;
Hancock, Mark J. ;
Kongsted, Alice ;
Louw, Quinette ;
Ferreira, Manuela L. ;
Genevay, Stephane ;
Hoy, Damian ;
Karppinen, Jaro ;
Pransky, Glenn ;
Sieper, Joachim ;
Smeets, Rob J. ;
Underwood, Martin .
LANCET, 2018, 391 (10137) :2356-2367
[9]   The Epidemiology of low back pain [J].
Hoy, D. ;
Brooks, P. ;
Blyth, F. ;
Buchbinder, R. .
BEST PRACTICE & RESEARCH IN CLINICAL RHEUMATOLOGY, 2010, 24 (06) :769-781
[10]   ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: Automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist [J].
Jamaludin, Amir ;
Lootus, Meelis ;
Kadir, Timor ;
Zisserman, Andrew ;
Urban, Jill ;
Battie, Michele C. ;
Fairbank, Jeremy ;
McCall, Iain .
EUROPEAN SPINE JOURNAL, 2017, 26 (05) :1374-1383