Challenges in Recycling Spent Lithium-Ion Batteries: Spotlight on Polyvinylidene Fluoride Removal

被引:50
|
作者
Wang Mengmeng [1 ,2 ]
Liu Kang [1 ,2 ]
Yu Jiadong [3 ]
Zhang Qiaozhi [1 ,2 ]
Zhang Yuying [1 ,2 ]
Valix, Marjorie [4 ]
Tsang, Daniel C. W. [1 ,2 ]
机构
[1] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hung Hom, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Res Ctr Environm Technol & Management, Hung Hom, Kowloon, Hong Kong, Peoples R China
[3] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China
[4] Univ Sydney, Sch Chem & Biomol Engn, Darlington, NSW 2008, Australia
关键词
cathode materials; circular economy; EV battery recycling; lithium recovery; sustainable waste management; PRINTED-CIRCUIT BOARDS; LIFEPO4 CATHODE MATERIALS; IRON PHOSPHATE BATTERIES; ALUMINUM CURRENT FOIL; VALUABLE METALS; THERMAL-TREATMENT; NEXT-GENERATION; HEAT-TREATMENT; POLY(VINYLIDENE FLUORIDE); MECHANICAL SEPARATION;
D O I
10.1002/gch2.202200237
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the recycling of retired lithium-ion batteries (LIBs), the cathode materials containing valuable metals should be first separated from the current collector aluminum foil to decrease the difficulty and complexity in the subsequent metal extraction. However, strong the binding force of organic binder polyvinylidene fluoride (PVDF) prevents effective separation of cathode materials and Al foil, thus affecting metal recycling. This paper reviews the composition, property, function, and binding mechanism of PVDF, and elaborates on the separation technologies of cathode material and Al foil (e.g., physical separation, solid-phase thermochemistry, solution chemistry, and solvent chemistry) as well as the corresponding reaction behavior and transformation mechanisms of PVDF. Due to the characteristic variation of the reaction systems, the dissolution, swelling, melting, and degradation processes and mechanisms of PVDF exhibit considerable differences, posing new challenges to efficient recycling of spent LIBs worldwide. It is critical to separate cathode materials and Al foil and recycle PVDF to reduce environmental risks from the recovery of retired LIBs resources. Developing fluorine-free alternative materials and solid-state electrolytes is a potential way to mitigate PVDF pollution in the recycling of spent LIBs in the EV era.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Fundamentals of the recycling of spent lithium-ion batteries
    Li, Pengwei
    Luo, Shaohua
    Lin, Yicheng
    Xiao, Jiefeng
    Xia, Xiaoning
    Liu, Xin
    Wang, Li
    He, Xiangming
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (24) : 11967 - 12013
  • [2] A review on recycling of spent lithium-ion batteries
    Dobo, Zsolt
    Dinh, Truong
    Kulcsar, Tibor
    ENERGY REPORTS, 2023, 9 : 6362 - 6395
  • [3] Progresses in Sustainable Recycling Technology of Spent Lithium-Ion Batteries
    Du, Kaidi
    Ang, Edison Huixiang
    Wu, Xinglong
    Liu, Yichun
    ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (04) : 1012 - 1036
  • [4] Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review
    Liu, Chunwei
    Lin, Jiao
    Cao, Hongbin
    Zhang, Yi
    Sun, Zhi
    JOURNAL OF CLEANER PRODUCTION, 2019, 228 : 801 - 813
  • [5] Technology for recycling and regenerating graphite from spent lithium-ion batteries
    Yi, Chenxing
    Zhou, Lijie
    Wu, Xiqing
    Sun, Wei
    Yi, Longsheng
    Yang, Yue
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 39 : 37 - 50
  • [6] A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries
    Lv, Weiguang
    Wang, Zhonghang
    Cao, Hongbin
    Sun, Yong
    Zhang, Yi
    Sun, Zhi
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (02): : 1504 - 1521
  • [7] Advances and challenges in anode graphite recycling from spent lithium-ion batteries
    Niu, Bo
    Xiao, Jiefeng
    Xu, Zhenming
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 439
  • [8] Current challenges and future opportunities toward recycling of spent lithium-ion batteries
    Golmohammadzadeh, Rabeeh
    Faraji, Fariborz
    Jong, Brian
    Pozo-Gonzalo, Cristina
    Banerjee, Parama Chakraborty
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 159
  • [9] Revealing the Dissolution Mechanism of Polyvinylidene Fluoride of Spent Lithium-Ion Batteries in Waste Oil-Based Methyl Ester Solvent
    Wang, Mengmeng
    Tan, Quanyin
    Liu, Lili
    Li, Jinhui
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (19): : 7489 - 7496
  • [10] Comprehensive review on recycling of spent lithium-ion batteries
    Chandran, V.
    Ghosh, Aritra
    Patil, Chandrashekhar K.
    Mohanavel, V.
    Priya, A. K.
    Rahim, Robbi
    Madavan, R.
    Muthuraman, U.
    Karthick, Alagar
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 167 - 180