On almost semimonotone matrices and the linear complementarity problem

被引:2
作者
Chauhan, Bharat Pratap [1 ]
Dubey, Dipti [1 ]
机构
[1] Shiv Nadar Univ, Dept Math, Dadri 201314, Uttar Pradesh, India
关键词
Almost semimonotone matrices; Almost copositive matrices; Linear complementarity problem;
D O I
10.1016/j.laa.2022.12.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we revisit the class of almost (strictly) semimonotone matrices and partially address the conjecture made by Wendler [Spec. Matrices 7 (2019) 291-303]. We disprove the second part of the conjecture by providing a counter example. The main result of this paper shows that Wendler's conjecture is true under the symmetry assumption. We explore some interesting matrix theoretic properties of almost (strictly) semimonotone matrices and also present results pertaining to the existence and multiplicity of solutions to the linear complementarity problem associated with an almost semimonotone matrix. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:35 / 50
页数:16
相关论文
共 50 条
  • [21] On the numerical solution of the linear complementarity problem
    E. O. Mazurkevich
    E. G. Petrova
    A. S. Strekalovsky
    Computational Mathematics and Mathematical Physics, 2009, 49 : 1318 - 1331
  • [22] Backward errors of the linear complementarity problem
    Wu, Xian-Ping
    Ke, Ri-Huan
    NUMERICAL ALGORITHMS, 2020, 83 (03) : 1249 - 1257
  • [23] Backward errors of the linear complementarity problem
    Xian-Ping Wu
    Ri-Huan Ke
    Numerical Algorithms, 2020, 83 : 1249 - 1257
  • [24] GTOR method for the linear complementarity problem
    Wang, Guangbin
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 163 - 165
  • [25] MTOR method for the linear complementarity problem
    Wang, Guangbin
    Zhang, Ning
    Li, Xue
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 321 - 324
  • [26] On the numerical solution of the linear complementarity problem
    Mazurkevicha, E. O.
    Petrova, E. G.
    Strekalovsky, A. S.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (08) : 1318 - 1331
  • [27] On the modulus algorithm for the linear complementarity problem
    Schäfer, U
    OPERATIONS RESEARCH LETTERS, 2004, 32 (04) : 350 - 354
  • [28] The linear complementarity problem on oriented matroids
    Tamura, A
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2000, E83D (03) : 353 - 361
  • [29] A neural network for the linear complementarity problem
    Liao, LZ
    MATHEMATICAL AND COMPUTER MODELLING, 1999, 29 (03) : 9 - 18
  • [30] A new generalized linear complementarity problem
    Wang, Chao
    Jiang, Cui-Ting
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE OF MATRICES AND OPERATORS (MAO 2012), 2012, : 186 - 189