On the normalized distance laplacian eigenvalues of graphs

被引:1
|
作者
Ganie, Hilal A. [1 ]
Rather, Bilal Ahmad [2 ]
Das, Kinkar Chandra [3 ]
机构
[1] JK Govt, Dept Sch Educ, Srinagar, Jammu & Kashmir, India
[2] United Arab Emirates Univ, Coll Sci, Math Sci Dept, Abu Dhabi 15551, U Arab Emirates
[3] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
Graph; Normalized distance laplacian matrix; Energy; Diameter; Wiener index; RANDIC INDEX; ENERGY; SPECTRUM; MATRIX;
D O I
10.1016/j.amc.2022.127615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The normalized distance Laplacian matrix (Dc-matrix) of a connected graph Gamma is defined by Dc(Gamma)= I- T r(Gamma)-1 / 2D(Gamma)T r(Gamma)-1 / 2, where D(Gamma) is the distance matrix and T r(Gamma) is the diagonal matrix of the vertex transmissions in Gamma. In this article, we present interest-ing spectral properties of Dc(Gamma)-matrix. We characterize the graphs having exactly two distinct Dc-eigenvalues which in turn solves a conjecture proposed in [26]. We charac-terize the complete multipartite graphs with three distinct Dc-eigenvalues. We present the bounds for the Dc-spectral radius and the second smallest eigenvalue of Dc(Gamma)-matrix and identify the candidate graphs attaining them. We also identify the classes of graphs whose second smallest Dc-eigenvalue is 1 and relate it with the distance spectrum of such graphs. Further, we introduce the concept of the trace norm (the normalized distance Laplacian energy DcE(Gamma) of Gamma) of I- Dc(Gamma). We obtain some bounds and characterize the corre-sponding extremal graphs.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Edge perturbation on graphs with clusters: Adjacency, Laplacian and signless Laplacian eigenvalues
    Cardoso, Domingos M.
    Rojo, Oscar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 512 : 113 - 128
  • [32] COMPUTING THE RECIPROCAL DISTANCE SIGNLESS LAPLACIAN EIGENVALUES AND ENERGY OF GRAPHS
    Alhevaz, A.
    Baghipur, M.
    Ramane, H. S.
    MATEMATICHE, 2019, 74 (01): : 49 - 73
  • [33] Graphs with three distinct distance eigenvalues
    Zhang, Yuke
    Lin, Huiqiu
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 445
  • [34] Some remarks on Laplacian eigenvalues and Laplacian energy of graphs
    Fath-Tabar, Gholam Hossein
    Ashrafi, Ali Reza
    MATHEMATICAL COMMUNICATIONS, 2010, 15 (02) : 443 - 451
  • [35] On the Distance Signless Laplacian Spectrum of Graphs
    Alhevaz, A.
    Baghipur, M.
    Hashemi, E.
    Ramane, H. S.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2603 - 2621
  • [36] Distance Laplacian spectra of graphs: A survey
    Rather, Bilal Ahmad
    Aouchiche, Mustapha
    DISCRETE APPLIED MATHEMATICS, 2025, 361 : 136 - 195
  • [37] On the second largest Laplacian eigenvalues of graphs
    Li, Jianxi
    Guo, Ji-Ming
    Shiu, Wai Chee
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2438 - 2446
  • [38] On sum of powers of the Laplacian eigenvalues of graphs
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) : 2239 - 2246
  • [39] Laplacian ABC-Eigenvalues of Graphs
    Yang, Ning
    Deng, Bo
    Li, Xueliang
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2021, 85 (01) : 195 - 206
  • [40] The distance Laplacian and distance signless Laplacian spectrum of some graphs
    Lu, Pengli
    Liu, Wenzhi
    ARS COMBINATORIA, 2020, 152 : 121 - 128