On the normalized distance laplacian eigenvalues of graphs

被引:1
|
作者
Ganie, Hilal A. [1 ]
Rather, Bilal Ahmad [2 ]
Das, Kinkar Chandra [3 ]
机构
[1] JK Govt, Dept Sch Educ, Srinagar, Jammu & Kashmir, India
[2] United Arab Emirates Univ, Coll Sci, Math Sci Dept, Abu Dhabi 15551, U Arab Emirates
[3] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
Graph; Normalized distance laplacian matrix; Energy; Diameter; Wiener index; RANDIC INDEX; ENERGY; SPECTRUM; MATRIX;
D O I
10.1016/j.amc.2022.127615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The normalized distance Laplacian matrix (Dc-matrix) of a connected graph Gamma is defined by Dc(Gamma)= I- T r(Gamma)-1 / 2D(Gamma)T r(Gamma)-1 / 2, where D(Gamma) is the distance matrix and T r(Gamma) is the diagonal matrix of the vertex transmissions in Gamma. In this article, we present interest-ing spectral properties of Dc(Gamma)-matrix. We characterize the graphs having exactly two distinct Dc-eigenvalues which in turn solves a conjecture proposed in [26]. We charac-terize the complete multipartite graphs with three distinct Dc-eigenvalues. We present the bounds for the Dc-spectral radius and the second smallest eigenvalue of Dc(Gamma)-matrix and identify the candidate graphs attaining them. We also identify the classes of graphs whose second smallest Dc-eigenvalue is 1 and relate it with the distance spectrum of such graphs. Further, we introduce the concept of the trace norm (the normalized distance Laplacian energy DcE(Gamma) of Gamma) of I- Dc(Gamma). We obtain some bounds and characterize the corre-sponding extremal graphs.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] On sum of powers of normalized Laplacian eigenvalues and resistance distances of graphs
    Sun, Wenwen
    Chen, Haiyan
    Hu, Mingying
    DISCRETE APPLIED MATHEMATICS, 2023, 338 : 179 - 186
  • [22] On graphs with a few distinct reciprocal distance Laplacian eigenvalues
    Andelic, Milica
    Khan, Saleem
    Pirzada, S.
    AIMS MATHEMATICS, 2023, 8 (12): : 29008 - 29016
  • [23] On the Sum of the Powers of Distance Signless Laplacian Eigenvalues of Graphs
    S. Pirzada
    Hilal A. Ganie
    A. Alhevaz
    M. Baghipur
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1143 - 1163
  • [24] Proof of conjectures on the distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 467 : 100 - 115
  • [25] On interlacing of net-Laplacian and normalized net-Laplacian eigenvalues of signed graphs
    Guragain, Satyam
    Srivastava, Ravi
    LINEAR & MULTILINEAR ALGEBRA, 2024,
  • [26] ON SUM OF POWERS OF LAPLACIAN EIGENVALUES AND LAPLACIAN ESTRADA INDEX OF GRAPHS
    Zhou, Bo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 62 (03) : 611 - 619
  • [27] On normalized Laplacian eigenvalues of power graphs associated to finite cyclic groups
    Rather, Bilal A.
    Pirzada, S.
    Chishti, T. A.
    Alghamdi, Ahmad M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (02)
  • [28] On Laplacian eigenvalues of connected graphs
    Milovanovic, Igor Z.
    Milovanovic, Emina I.
    Glogic, Edin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (02) : 529 - 535
  • [29] Exploring normalized distance Laplacian eigenvalues of the zero-divisor graph of ring Zn
    Rehman, Nadeem Ur
    Nazim
    Nazim, Mohd
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (02) : 515 - 526
  • [30] On the first two largest distance Laplacian eigenvalues of unicyclic graphs
    Lin, Hongying
    Du, Zhibin
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 546 : 289 - 307