Coherent pairs and Sobolev-type orthogonal polynomials on the real line: An extension to the matrix case

被引:1
|
作者
Fuentes, Edinson [1 ]
Garza, Luis E. [2 ]
机构
[1] Univ Pedag & Tecnol Colombia, Escuela Matemat & Estadist, Ave Cent Norte 39-115, Tunja, Boyaca, Colombia
[2] Univ Colima, Fac Ciencias, Bernal Diaz Castillo 340, Colima, Mexico
关键词
Matrix orthogonal polynomials; Matrix coherent pairs; Matrix Sobolev polynomials; LAGUERRE; ASYMPTOTICS; RESPECT;
D O I
10.1016/j.jmaa.2022.126674
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this contribution, we extend the concept of coherent pair for two quasi-definite matrix linear functionals u0 and u1. Necessary and sufficient conditions for these functionals to constitute a coherent pair are determined, when one of them satisfies a matrix Pearson-type equation. Moreover, we deduce algebraic properties of the matrix orthogonal polynomials associated with the Sobolev-type inner product(sic)p, q(sic)(s) = (sic)p,q(sic)(u0) + (sic)p'M-1, q'M-2(sic)(u1) ,where M-1 and M-2 are m x m non-singular matrices and p, q are matrix polynomials.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] On the second-order holonomic equation for Sobolev-type orthogonal polynomials
    Rebocho, Maria das Neves
    APPLICABLE ANALYSIS, 2022, 101 (01) : 314 - 336
  • [32] Zeros of Gegenbauer-Sobolev Orthogonal Polynomials: Beyond Coherent Pairs
    de Andrade, E. X. L.
    Bracciali, C. F.
    Ranga, A. Sri
    ACTA APPLICANDAE MATHEMATICAE, 2009, 105 (01) : 65 - 82
  • [33] Higher Order Sobolev-Type Spaces on the Real Line
    Bojarski, Bogdan
    Kinnunen, Juha
    Zurcher, Thomas
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [34] A higher order Sobolev-type inner product for orthogonal polynomials in several variables
    Herbert Dueñas
    Luis E. Garza
    Miguel Piñar
    Numerical Algorithms, 2015, 68 : 35 - 46
  • [35] Asymptotic Behavior of Sobolev-Type Orthogonal Polynomials on a Rectifiable Jordan Curve or Arc
    A. Branquinho
    A. F. Moreno
    F. Marcellán
    Constructive Approximation, 2002, 18 : 161 - 182
  • [36] A higher order Sobolev-type inner product for orthogonal polynomials in several variables
    Duenas, Herbert
    Garza, Luis E.
    Pinar, Miguel
    NUMERICAL ALGORITHMS, 2015, 68 (01) : 35 - 46
  • [37] The Fourier Series of the Meixner Polynomials Orthogonal with Respect to the Sobolev-type Inner Product
    Gadzhimirzaev, R. M.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2016, 16 (04): : 388 - 395
  • [38] Asymptotic behavior of Sobolev-type orthogonal polynomials on a rectifiable Jordan curve or arc
    Branquinho, A
    Moreno, AF
    Marcellán, F
    CONSTRUCTIVE APPROXIMATION, 2002, 18 (02) : 161 - 182
  • [39] Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kind
    F. Marcellán
    A. Sri Ranga
    Results in Mathematics, 2017, 71 : 1127 - 1149
  • [40] Asymptotics of Sobolev orthogonal polynomials for symmetrically coherent pairs of measures with compact support
    Marcellan, F
    MartinezFinkelshtein, A
    MorenoBalcazar, JJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 81 (02) : 217 - 227