Anti-Adversarially Manipulated Attributions for Weakly Supervised Semantic Segmentation and Object Localization

被引:10
|
作者
Lee, Jungbeom [1 ]
Kim, Eunji [1 ]
Mok, Jisoo [1 ]
Yoon, Sungroh [1 ,2 ,3 ]
机构
[1] Seoul Natl Univ, Dept Elect & Comp Engn, Seoul 08826, South Korea
[2] Seoul Natl Univ, Interdisciplinary Program AI, AIIS, ASRI,INMC, Seoul 08826, South Korea
[3] Seoul Natl Univ, ISRC, Seoul 08826, South Korea
关键词
Semantics; Location awareness; Image segmentation; Annotations; Training; Perturbation methods; Artificial neural networks; Weakly supervised learning; semi-supervised learning; semantic segmentation; object localization;
D O I
10.1109/TPAMI.2022.3166916
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Obtaining accurate pixel-level localization from class labels is a crucial process in weakly supervised semantic segmentation and object localization. Attribution maps from a trained classifier are widely used to provide pixel-level localization, but their focus tends to be restricted to a small discriminative region of the target object. An AdvCAM is an attribution map of an image that is manipulated to increase the classification score produced by a classifier before the final softmax or sigmoid layer. This manipulation is realized in an anti-adversarial manner, so that the original image is perturbed along pixel gradients in directions opposite to those used in an adversarial attack. This process enhances non-discriminative yet class-relevant features, which make an insufficient contribution to previous attribution maps, so that the resulting AdvCAM identifies more regions of the target object. In addition, we introduce a new regularization procedure that inhibits the incorrect attribution of regions unrelated to the target object and the excessive concentration of attributions on a small region of the target object. Our method achieves a new state-of-the-art performance in weakly and semi-supervised semantic segmentation, on both the PASCAL VOC 2012 and MS COCO 2014 datasets. In weakly supervised object localization, it achieves a new state-of-the-art performance on the CUB-200-2011 and ImageNet-1K datasets.
引用
收藏
页码:1618 / 1634
页数:17
相关论文
共 50 条
  • [31] Token Masking Transformer for Weakly Supervised Object Localization
    Xu, Wenhao
    Wang, Changwei
    Xu, Rongtao
    Xu, Shibiao
    Meng, Weiliang
    Zhang, Man
    Zhang, Xiaopeng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 2059 - 2069
  • [32] Progressive Representation Adaptation for Weakly Supervised Object Localization
    Li, Dong
    Huang, Jia-Bin
    Li, Yali
    Wang, Shengjin
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (06) : 1424 - 1438
  • [33] Weakly Supervised Semantic Roadside Object Segmentation Using Digital Maps
    Guelen, Johannes A. P.
    Salah, Albert Ali
    Boom, Bastiaan J.
    Vijverberg, Julien A.
    2020 JOINT 9TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2020 4TH INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR), 2020,
  • [34] AN IMPROVED APPROACH TO WEAKLY SUPERVISED SEMANTIC SEGMENTATION
    Xu, Lian
    Bennamoun, Mohammed
    Boussaid, Farid
    An, Senjian
    Sohel, Ferdous
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1897 - 1901
  • [35] WegFormer : Transformers for weakly supervised semantic segmentation
    Liu, Chunmeng
    Li, Guangyao
    EXPERT SYSTEMS, 2024, 41 (03)
  • [36] DDAug: Differentiable Data Augmentation for Weakly Supervised Semantic Segmentation
    Li, Boyang
    Zhang, Fei
    Wang, Longguang
    Wang, Yingqian
    Liu, Ting
    Lin, Zaiping
    An, Wei
    Guo, Yulan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 4764 - 4775
  • [37] Weakly supervised semantic segmentation based on EM algorithm with localization clues
    Li, Yang
    Liu, Yang
    Liu, Guojun
    Zhai, Deming
    Guo, Maozu
    NEUROCOMPUTING, 2018, 275 : 2574 - 2587
  • [38] Salient-Boundary-Guided Pseudo-Pixel Supervision for Weakly-Supervised Semantic Segmentation
    Shi, Min
    Deng, Weizhao
    Yi, Qingming
    Liu, Weiping
    Luo, Aiwen
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 86 - 90
  • [39] Knowledge-Guided Causal Intervention for Weakly-Supervised Object Localization
    Shao, Feifei
    Luo, Yawei
    Gao, Fei
    Yang, Yi
    Xiao, Jun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6477 - 6489
  • [40] Adversarial Transformers for Weakly Supervised Object Localization
    Meng, Meng
    Zhang, Tianzhu
    Zhang, Zhe
    Zhang, Yongdong
    Wu, Feng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 7130 - 7143