Tuning exponential decay factor in oligophenylene molecular junctions with graphene nanoribbon electrodes

被引:0
作者
Ding, Wence [1 ]
Liu, Guang [1 ,2 ]
Li, Xiaobo [3 ,4 ]
Zhou, Guanghui [1 ,5 ]
机构
[1] Hunan Normal Univ, Dept Phys, Key Lab Low Dimens Struct & Quantum Manipulat, Minist Educ, Changsha 410081, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[4] Hunan Univ Technol & Business, Sch Microelect & Phys, Dept Appl Phys, Changsha 410205, Peoples R China
[5] Shaoyang Univ, Dept Phys, Coll Sci, Shaoyang 422001, Peoples R China
基金
中国国家自然科学基金;
关键词
Molecular junction; Graphene electrode; Transport property; Ab initio calculation; NEGATIVE DIFFERENTIAL RESISTANCE; EDGE STATES; CONDUCTANCE; TRANSPORT; RECTIFICATION; DEPENDENCE; ZIGZAG;
D O I
10.1063/1674-0068/cjcp2112285
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
We explore the transport properties of oligophenylene molecular junctions, where the center molecule containing 1, 2, or 3 phenyls is sand-wiched between two graphene nanoribbons (GNR) with different edge shapes. According to the obtained results of the first-principles calculations combined with non-equilibrium Green's function method, we find that the molecular length-dependent resistance of all examined oligophenylene molecular junctions follows well the exponential decay law with different slopes, and the exponential decay factor is sensitive to the edge shape of GNRs and the molecule-electrode connecting configuration. These observations indicate that the current through the oligophenylene molecular junction can be effectively tuned by changing the edge shape of GNRs, the molecular length, and the molecular contacting configuration. These findings provide theoretical insight into the design of molecular devices using GNRs as electrodes.
引用
收藏
页码:717 / 724
页数:8
相关论文
共 48 条
  • [21] Effects of amino-nitro side groups on electron device of oligo p-phenylenevinylene molecular between ZGNR electrodes
    Li, Xiaobo
    Li, Hui-Li
    Wan, Haiqing
    Zhou, Guanghui
    [J]. ORGANIC ELECTRONICS, 2015, 19 : 26 - 33
  • [22] Chemically derived, ultrasmooth graphene nanoribbon semiconductors
    Li, Xiaolin
    Wang, Xinran
    Zhang, Li
    Lee, Sangwon
    Dai, Hongjie
    [J]. SCIENCE, 2008, 319 (5867) : 1229 - 1232
  • [23] Interplay of Bias-Driven Charging and the Vibrational Stark Effect in Molecular Junctions
    Li, Yajing
    Zolotavin, Pavlo
    Doak, Peter
    Kronik, Leeor
    Neaton, Jeffrey B.
    Natelson, Douglas
    [J]. NANO LETTERS, 2016, 16 (02) : 1104 - 1109
  • [24] Communication: Electronic and transport properties of molecular junctions under a finite bias: A dual mean field approach
    Liu, Shuanglong
    Feng, Yuan Ping
    Zhang, Chun
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (19)
  • [25] Conductance and transparence of long molecular wires
    Magoga, M
    Joachim, C
    [J]. PHYSICAL REVIEW B, 1997, 56 (08): : 4722 - 4729
  • [26] Study on molecular devices with negative differential resistance
    Mahmoud, Ahmed
    Lugli, Paolo
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (03)
  • [27] On the suppression and significance of ghost transmission in electron transport modeling of single molecule junctions
    Pal, Partha Pratim
    Dunietz, Barry D.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (19)
  • [28] Topographic and Spectroscopic Characterization of Electronic Edge States in CVD Grown Graphene Nanoribbons
    Pan, Minghu
    Costa Girao, E.
    Jia, Xiaoting
    Bhaviripudi, Sreekar
    Li, Qing
    Kong, Jing
    Meunier, V.
    Dresselhaus, Mildred S.
    [J]. NANO LETTERS, 2012, 12 (04) : 1928 - 1933
  • [29] Room-Temperature Gating of Molecular Junctions Using Few-Layer Graphene Nanogap Electrodes
    Prins, Ferry
    Barreiro, Amelia
    Ruitenberg, Justus W.
    Seldenthuis, Johannes S.
    Aliaga-Alcalde, Nuria
    Vandersypen, Lieven M. K.
    van der Zant, Herre S. J.
    [J]. NANO LETTERS, 2011, 11 (11) : 4607 - 4611
  • [30] Conductance of a molecular junction
    Reed, MA
    Zhou, C
    Muller, CJ
    Burgin, TP
    Tour, JM
    [J]. SCIENCE, 1997, 278 (5336) : 252 - 254