Tuning exponential decay factor in oligophenylene molecular junctions with graphene nanoribbon electrodes

被引:0
作者
Ding, Wence [1 ]
Liu, Guang [1 ,2 ]
Li, Xiaobo [3 ,4 ]
Zhou, Guanghui [1 ,5 ]
机构
[1] Hunan Normal Univ, Dept Phys, Key Lab Low Dimens Struct & Quantum Manipulat, Minist Educ, Changsha 410081, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[4] Hunan Univ Technol & Business, Sch Microelect & Phys, Dept Appl Phys, Changsha 410205, Peoples R China
[5] Shaoyang Univ, Dept Phys, Coll Sci, Shaoyang 422001, Peoples R China
基金
中国国家自然科学基金;
关键词
Molecular junction; Graphene electrode; Transport property; Ab initio calculation; NEGATIVE DIFFERENTIAL RESISTANCE; EDGE STATES; CONDUCTANCE; TRANSPORT; RECTIFICATION; DEPENDENCE; ZIGZAG;
D O I
10.1063/1674-0068/cjcp2112285
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
We explore the transport properties of oligophenylene molecular junctions, where the center molecule containing 1, 2, or 3 phenyls is sand-wiched between two graphene nanoribbons (GNR) with different edge shapes. According to the obtained results of the first-principles calculations combined with non-equilibrium Green's function method, we find that the molecular length-dependent resistance of all examined oligophenylene molecular junctions follows well the exponential decay law with different slopes, and the exponential decay factor is sensitive to the edge shape of GNRs and the molecule-electrode connecting configuration. These observations indicate that the current through the oligophenylene molecular junction can be effectively tuned by changing the edge shape of GNRs, the molecular length, and the molecular contacting configuration. These findings provide theoretical insight into the design of molecular devices using GNRs as electrodes.
引用
收藏
页码:717 / 724
页数:8
相关论文
共 48 条
  • [1] Design of the Local Spin Polarization at the Organic-Ferromagnetic Interface
    Atodiresei, Nicolae
    Brede, Jens
    Lazic, Predrag
    Caciuc, Vasile
    Hoffmann, Germar
    Wiesendanger, Roland
    Bluegel, Stefan
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (06)
  • [2] MOLECULAR RECTIFIERS
    AVIRAM, A
    RATNER, MA
    [J]. CHEMICAL PHYSICS LETTERS, 1974, 29 (02) : 277 - 283
  • [3] Tuning Rectification in Single-Molecular Diodes
    Batra, Arunabh
    Darancet, Pierre
    Chen, Qishui
    Meisner, Jeffrey S.
    Widawsky, Jonathan R.
    Neaton, Jeffrey B.
    Nuckolls, Colin
    Venkataraman, Latha
    [J]. NANO LETTERS, 2013, 13 (12) : 6233 - 6237
  • [4] Franck-Condon Blockade in a Single-Molecule Transistor
    Burzuri, Enrique
    Yamamoto, Yoh
    Warnock, Michael
    Zhong, Xiaoliang
    Park, Kyungwha
    Cornia, Andrea
    van der Zant, Herre S. J.
    [J]. NANO LETTERS, 2014, 14 (06) : 3191 - 3196
  • [5] Building High-Throughput Molecular Junctions Using Indented Graphene Point Contacts
    Cao, Yang
    Dong, Shaohua
    Liu, Song
    He, Li
    Gan, Lin
    Yu, Xiaoming
    Steigerwald, Michael L.
    Wu, Xiaosong
    Liu, Zhongfan
    Guo, Xuefeng
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (49) : 12228 - 12232
  • [6] Large on-off ratios and negative differential resistance in a molecular electronic device
    Chen, J
    Reed, MA
    Rawlett, AM
    Tour, JM
    [J]. SCIENCE, 1999, 286 (5444) : 1550 - 1552
  • [7] Electron transport channels and their manipulation by impurity in armchair-edge graphene nanoribbons
    Chen, Xiongwen
    Shi, Zhengang
    Chen, Baoju
    Song, Kehui
    Zhou, Guanghui
    [J]. CARBON, 2014, 72 : 365 - 371
  • [8] Dependence of transport on adatom location for armchair-edge graphene nanoribbons
    Chen, Xiongwen
    Song, Kehui
    Zhou, Benhu
    Wang, Haiyan
    Zhou, Guanghui
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (09)
  • [9] Electronic Transport Properties of Spin-Crossover Magnet Fe(II)-N4S2 Complexes
    Du, Ming-li
    Hu, Yu-jie
    Huang, Jing
    Li, Qun-xiang
    [J]. CHINESE JOURNAL OF CHEMICAL PHYSICS, 2018, 31 (01) : 33 - 38
  • [10] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191