Effect of solid-electrolyte pellet density on failure of solid-state batteries

被引:29
作者
Diallo, Mouhamad S. [1 ]
Shi, Tan [1 ]
Zhang, Yaqian [1 ]
Peng, Xinxing [1 ]
Shozib, Imtiaz [2 ]
Wang, Yan [3 ]
Miara, Lincoln J. [3 ]
Scott, Mary C. [1 ,4 ]
Tu, Qingsong Howard [2 ,5 ]
Ceder, Gerbrand [1 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Rochester Inst Technol, Dept Mech Engn, Rochester, NY 14623 USA
[3] Samsung Semicond Inc, Samsung Adv Inst Technol Amer, Adv Mat Lab, Cambridge, MA 02138 USA
[4] Lawrence Berkeley Natl Lab, Natl Ctr Elect Microscopy, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
关键词
LI METAL; CHARGE-TRANSFER; LITHIUM; PROPAGATION; INTERFACE; MECHANISM; KINETICS; ELECTRODEPOSITION; DEFORMATION; DEGRADATION;
D O I
10.1038/s41467-024-45030-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite the potentially higher energy density and improved safety of solid-state batteries (SSBs) relative to Li-ion batteries, failure due to Li-filament penetration of the solid electrolyte and subsequent short circuit remains a critical issue. Herein, we show that Li-filament growth is suppressed in solid-electrolyte pellets with a relative density beyond similar to 95%. Below this threshold value, however, the battery shorts more easily as the density increases due to faster Li-filament growth within the percolating pores in the pellet. The microstructural properties (e.g., pore size, connectivity, porosity, and tortuosity) of 75%Li2S-25%P2S5 with various relative densities are quantified using focused ion beam-scanning electron microscopy tomography and permeability tests. Furthermore, modeling results provide details on the Li-filament growth inside pores ranging from 0.2 to 2 mu m in size. Our findings improve the understanding of the failure modes of SSBs and provide guidelines for the design of dendrite-free SSBs.
引用
收藏
页数:9
相关论文
共 47 条
[41]   Transitioning solid-state batteries from lab to market: Linking electro-chemo-mechanics with practical considerations [J].
Wang, Michael J. ;
Kazyak, Eric ;
Dasgupta, Neil P. ;
Sakamoto, Jeff .
JOULE, 2021, 5 (06) :1371-1390
[42]  
Wang Y, 2015, NAT MATER, V14, P1026, DOI [10.1038/nmat4369, 10.1038/NMAT4369]
[43]   Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte [J].
Wenzel, Sebastian ;
Weber, Dominik A. ;
Leichtweiss, Thomas ;
Busche, Martin R. ;
Sann, Joachim ;
Janek, Juergen .
SOLID STATE IONICS, 2016, 286 :24-33
[44]   Gas flow in porous media with Klinkenberg effects [J].
Wu, YS ;
Pruess, K ;
Persoff, P .
TRANSPORT IN POROUS MEDIA, 1998, 32 (01) :117-137
[45]   Lithium Oxide Superionic Conductors Inspired by Garnet and NASICON Structures [J].
Xiao, Yihan ;
Jun, KyuJung ;
Wang, Yan ;
Miara, Lincoln J. ;
Tu, Qingsong ;
Ceder, Gerbrand .
ADVANCED ENERGY MATERIALS, 2021, 11 (37)
[46]   Intragranular growth and evenly distribution mechanism of Li metal in Li7La3Zr2O12 electrolyte [J].
Zhang, L. C. ;
Yang, J. F. ;
Li, C. L. ;
Gao, Y. X. ;
Wang, X. P. ;
Fang, Q. F. .
JOURNAL OF POWER SOURCES, 2020, 449
[47]   New Family of Argyrodite Thioantimonate Lithium Superionic Conductors [J].
Zhou, Laidong ;
Assoud, Abdeljalil ;
Zhang, Qiang ;
Wu, Xiaohan ;
Nazar, Linda F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (48) :19002-19013