Is Artificial Intelligence the Key to Revolutionizing Benign Prostatic Hyperplasia Diagnosis and Management?

被引:2
作者
Hegazi, Mohamed A. A. A. [1 ]
Taverna, Gianluigi [2 ]
Grizzi, Fabio [1 ,3 ]
机构
[1] IRCCS Humanitas Res Hosp, Dept Immunol & Inflammat, I-20089 Milan, Italy
[2] Humanitas Mater Domini, Dept Urol, I-21100 Varese, Italy
[3] Humanitas Univ, Dept Biomed Sci, I-20072 Milan, Italy
来源
ARCHIVOS ESPANOLES DE UROLOGIA | 2023年 / 76卷 / 09期
关键词
prostate; benign prostatic hyperplasia; Artificial Intelligence; diagnosis; management; SERUM MARKERS; CANCER; PREDICTION; BIOPSIES; ANTIGEN; SYSTEM;
D O I
10.56434/j.arch.esp.urol.20237609.79
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Benign prostatic hyperplasia (BPH) is a prevalent condition among older men that is characterized by the enlargement of the prostate gland and compression of the urethra, which often results in lower urinary tract symptoms, such as frequent urination, difficulty in starting urination, and incomplete bladder emptying. The development of BPH is thought to be primarily due to an imbalance between cell proliferation and apoptosis, underlying inflammation, epithelial-to-mesenchymal transition, and local paracrine and autocrine growth factors, although the exact molecular mechanisms are not yet fully understood. Anatomical structures considered natural and benign observations can occasionally present multi-parametric magnetic resonance imaging appearances that resemble prostate cancer (PCa), posing a risk of misinterpretation and generating false-positive outcomes and subsequently, unnecessary interventions. To aid in the diagnosis of BPH, distinguish it from PCa, and assist with treatment and outcome prediction, various Artificial Intelligence (AI)-based algorithms have been proposed to assist clinicians in the medical practice. Here, we explore the results of these new technological advances and discuss their potential to enhance clinicians' cognitive abilities and expertise. There is no doubt that AI holds extensive medical potential, but the cornerstone for secure, efficient, and ethical integration into diverse medical fields still remains well-structured clinical trials.
引用
收藏
页码:643 / 656
页数:14
相关论文
共 65 条
  • [1] Review of Prostate Anatomy and Embryology and the Etiology of Benign Prostatic Hyperplasia
    Aaron, LaTayia
    Franco, Omar E.
    Hayward, Simon W.
    [J]. UROLOGIC CLINICS OF NORTH AMERICA, 2016, 43 (03) : 279 - +
  • [2] [Anonymous], 1950, MIND, V59, P433, DOI DOI 10.1093/MIND/LIX.236.433
  • [3] ESUR prostate MR guidelines 2012
    Barentsz, Jelle O.
    Richenberg, Jonathan
    Clements, Richard
    Choyke, Peter
    Verma, Sadhna
    Villeirs, Geert
    Rouviere, Olivier
    Logager, Vibeke
    Futterer, Jurgen J.
    [J]. EUROPEAN RADIOLOGY, 2012, 22 (04) : 746 - 757
  • [4] Quality checkpoints in the MRI-directed prostate cancer diagnostic pathway
    Barrett, Tristan
    de Rooij, Maarten
    Giganti, Francesco
    Allen, Clare
    Barentsz, Jelle O.
    Padhani, Anwar R.
    [J]. NATURE REVIEWS UROLOGY, 2023, 20 (01) : 9 - 22
  • [5] Artificial intelligence applications in prostate cancer
    Baydoun, Atallah
    Jia, Angela Y. Y.
    Zaorsky, Nicholas G. G.
    Kashani, Rojano
    Rao, Santosh
    Shoag, Jonathan E. E.
    Vince, Randy A. A.
    Bittencourt, Leonardo Kayat
    Zuhour, Raed
    Price, Alex T. T.
    Arsenault, Theodore H. H.
    Spratt, Daniel E. E.
    [J]. PROSTATE CANCER AND PROSTATIC DISEASES, 2024, 27 (01) : 37 - 45
  • [6] Development of a 3D CNN-based AI Model for Automated Segmentation of the Prostatic Urethra
    Belue, Mason J.
    Harmon, Stephanie A.
    Patel, Krishnan
    Daryanani, Asha
    Yilmaz, Enis Cagatay
    Pinto, Peter A.
    Wood, Bradford J.
    Citrin, Deborah E.
    Choyke, Peter L.
    Turkbey, Baris
    [J]. ACADEMIC RADIOLOGY, 2022, 29 (09) : 1404 - 1412
  • [7] Robotic versus open simple prostatectomy for benign prostatic hyperplasia in large glands: single-centre study
    Benarroche, Davy
    Paladini, Alessio
    Grobet-Jeandin, Elisabeth
    Vaessen, Christophe
    Parra, Jerome
    Seisen, Thomas
    Pinar, Ugo
    Roupret, Morgan
    [J]. WORLD JOURNAL OF UROLOGY, 2022, 40 (12) : 3001 - 3006
  • [8] Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study
    Bulten, Wouter
    Pinckaers, Hans
    van Boven, Hester
    Vink, Robert
    de Bel, Thomas
    van Ginneken, Bram
    van der Laak, Jeroen
    Hulsbergen-van de Kaa, Christina
    Litjens, Geert
    [J]. LANCET ONCOLOGY, 2020, 21 (02) : 233 - 241
  • [9] Artificial intelligence and urology: ethical considerations for urologists and patients
    Cacciamani, Giovanni E.
    Chen, Andrew
    Gill, Inderbir S.
    Hung, Andrew J. J.
    [J]. NATURE REVIEWS UROLOGY, 2024, 21 (01) : 50 - 59
  • [10] Exploring the Use of Artificial Intelligence in the Management of Prostate Cancer
    Chu, Timothy N. N.
    Wong, Elyssa Y. Y.
    Ma, Runzhuo
    Yang, Cherine H. H.
    Dalieh, Istabraq S.
    Hung, Andrew J. J.
    [J]. CURRENT UROLOGY REPORTS, 2023, 24 (05) : 231 - 240