Exploratory image data analysis for quality improvement hypothesis generation

被引:1
|
作者
Zhang, Yifei [1 ]
Allen, Theodore T. [1 ]
Rodriguez Buno, Ramiro [1 ]
机构
[1] Ohio State Univ, Integrated Syst Engn, 1971 Neil Ave,210 Baker Syst, Columbus, OH 43210 USA
关键词
body-in-white; computer vision; exploratory data analysis; graphical data analysis; image processing; pattern discovery; pipeline inspection; quality improvement; welding;
D O I
10.1080/08982112.2023.2285305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Images can provide critical information for quality engineering. Exploratory image data analysis (EIDA) is proposed here as a special case of EDA (exploratory data analysis) for quality improvement problems with image data. The EIDA method aims to obtain useful information from the image data to identify hypotheses for additional exploration relating to key inputs or outputs. The proposed four steps of EIDA are: (1) image processing, (2) image-derived quantitative data analysis and display, (3) salient feature (pattern) identification, and (4) salient feature (pattern) interpretation. Three examples illustrate the methods for identifying and prioritizing issues for quality improvement, identifying key input variables for future study, identifying outliers, and formulating causal hypotheses.
引用
收藏
页码:693 / 712
页数:20
相关论文
共 50 条
  • [31] Exploratory data analysis for industrial safety application
    Vezzoli, M.
    Ponzoni, A.
    Pardo, M.
    Falasconi, M.
    Faglia, G.
    Sberveglieri, G.
    SENSORS AND ACTUATORS B-CHEMICAL, 2008, 131 (01) : 100 - 109
  • [32] Principle of learning metrics for exploratory data analysis
    Kaski, S
    Sinkkonen, J
    JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2004, 37 (2-3): : 177 - 188
  • [33] THE CONTRIBUTION OF EXPLORATORY STATISTICS TO THE ANALYSIS OF QUALITATIVE DATA
    Huber, Gunter L.
    Guertler, Leo
    Gento, Samuel
    PERSPECTIVA EDUCACIONAL, 2018, 57 (01): : 50 - 69
  • [34] Univariate exploratory data analysis of satellite telemetry
    Praveen, Mv Ramachandra
    Choudhury, Sushabhan
    Kuchhal, Piyush
    Singh, Rajesh
    Pandey, Purnendu Shekhar
    Galletta, Antonino
    INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, 2024, 42 (01) : 57 - 85
  • [35] CHEMOSTAT: EXPLORATORY MULTIVARIATE DATA ANALYSIS SOFTWARE
    Helfer, Gilson A.
    Bock, Fernanda
    Marder, Luciano
    Furtado, Joao C.
    da Costa, Adilson B.
    Ferrao, Marco F.
    QUIMICA NOVA, 2015, 38 (04): : 575 - 579
  • [36] A quality improvement model for the development of complex products based on data mining and mechanism analysis
    Liu, Tao-tao
    Duan, Gui-jiang
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2020, 43 (08) : 763 - 774
  • [37] Perspective Exploratory Methods for Multidimensional Data Analysis
    Valis, D.
    Zak, L.
    Vintr, Z.
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2019, : 426 - 430
  • [38] EXPLORATORY DATA ANALYSIS ON UNEMPLOYMENT RATES IN USA
    Luo, Jia
    Shang, Junfeng
    ADVANCES AND APPLICATIONS IN STATISTICS, 2016, 48 (04) : 303 - 316
  • [39] Exploratory Data Analysis of Fault Injection Campaigns
    Cerveira, Frederico
    Kocsis, Imre
    Barbosa, Raul
    Madeira, Henrique
    Pataricza, Andras
    2018 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS 2018), 2018, : 191 - 202
  • [40] Microarrays, pattern recognition and exploratory data analysis
    Mertens, BJA
    STATISTICS IN MEDICINE, 2003, 22 (11) : 1879 - 1899