Reconstructing Neutral Face Expressions with Disentangled Variational Autoencoder

被引:0
作者
Wiem, Grina [1 ,2 ]
Ali, Douik [1 ]
机构
[1] Univ Sousse, Sousse Technol Ctr, Natl Sch Engineers Sousse, Networked Objects Control & Commun Syst Lab, Sahloul Belt Rd, Sousse 4054, Tunisia
[2] Univ Monastir, Natl Engn Sch Monastir, Rue Ibn Jazzar, Monastir 5035, Tunisia
来源
ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT II | 2024年 / 14496卷
关键词
Face expression generation; Disentangled representation; Variational autoencoder; Ranger optimizer;
D O I
10.1007/978-3-031-50072-5_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study tackles unsupervised learning for disentangled representations in facial expression generation. It introduces a novel deep architecture by combining FactorVAE and beta-VAE concepts, incorporating the Ranger optimizer and Dropout layers. The goal is to learn disentangled representations that capture essential facial expression factors, like the neutral expression, while ensuring independence between different expression dimensions. This approach achieves faster convergence and improved optimization, striking a better balance between disentanglement and reconstruction quality. The method enables accurate and diverse facial expression generation and enhances model generalization through adaptive learning rate adjustments. The learned disentangled representations also facilitate the generation of realistic and interpretable facial expressions, making it a promising approach for various facial expression generation tasks.
引用
收藏
页码:83 / 94
页数:12
相关论文
共 24 条
  • [1] Banerjee Sandipan, 2023, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), P1071, DOI 10.1109/CVPRW59228.2023.00114
  • [2] Variational autoencoders for anomalous jet tagging
    Cheng, Taoli
    Arguin, Jean-Francois
    Leissner-Martin, Julien
    Pilette, Jacinthe
    Golling, Tobias
    [J]. PHYSICAL REVIEW D, 2023, 107 (01)
  • [3] Disentangling Representations in Restricted Boltzmann Machines without Adversaries
    Fernandez-de-Cossio-Diaz, Jorge
    Cocco, Simona
    Monasson, Remi
    [J]. PHYSICAL REVIEW X, 2023, 13 (02)
  • [4] Generalized Wasserstein Dice Score, Distributionally Robust Deep Learning, and Ranger for Brain Tumor Segmentation: BraTS 2020 Challenge
    Fidon, Lucas
    Ourselin, Sebastien
    Vercauteren, Tom
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 200 - 214
  • [5] Fontanini T, 2023, Arxiv, DOI arXiv:2307.05317
  • [6] Gao Haoxiang, 2021, bioRxiv
  • [7] Hao XR, 2023, Arxiv, DOI arXiv:2306.02565
  • [8] Iskif A, 2021, Vector quantized variational autoencoder (VQ-VAE) in image compression
  • [9] Rezende DJ, 2018, Arxiv, DOI [arXiv:1810.00597, 10.48550/arXiv.1810.00597, DOI 10.48550/ARXIV.1810.00597]
  • [10] Kim H, 2018, PR MACH LEARN RES, V80