Efficient noiseless linear amplification protocol for single-photon state using imperfect auxiliary photon source

被引:2
作者
Gu, Jing-Qiu [1 ,2 ,3 ]
Feng, Ya-Peng [2 ,3 ]
Du, Ming-Ming [2 ,3 ]
Zhong, Wei [4 ]
Sheng, Yu-Bo [2 ,3 ,4 ]
Zhou, Lan [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Coll Flexible Elect Future Technol, Nanjing 210023, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Peoples R China
基金
中国国家自然科学基金;
关键词
noiseless linear amplification; imperfect auxiliary single-photon source; quantum scissor; local-quadrature squeezing operation; ENTANGLEMENT;
D O I
10.1088/1612-202X/ad1aaa
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Noiseless linear amplification (NLA) is a crucial method to solve the photon transmission loss problem. However, most NLA protocols require an ideal auxiliary single-photon source, which is unavailable under current experimental condition. Meanwhile, their heralded amplification performance is relatively low. For enhancing the feasibility and amplification performance of the NLA, in this paper, we propose an efficient NLA protocol with a practical imperfect auxiliary single-photon source. We introduce the local-quadrature squeezing operation into the NLA protocol, which can effectively increase its amplification factor. This NLA protocol only uses some common linear-optical elements, the practical imperfect auxiliary single-photon source, and imperfect single-photon detectors, so that it is easy to implement under the existing experimental condition. It may have important applications in the future quantum information processing field.
引用
收藏
页数:9
相关论文
共 58 条
  • [1] Experimental demonstration of graph-state quantum secret sharing
    Bell, B. A.
    Markham, D.
    Herrera-Marti, D. A.
    Marin, A.
    Wadsworth, W. J.
    Rarity, J. G.
    Tame, M. S.
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] Bennett C.H., 1984, Theoretical Computer Science, V175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025, 10.1103/RevModPhys.74.145]
  • [3] IC-LDPC Polar codes-based reconciliation for continuous-variable quantum key distribution at low signal-to-noise ratio
    Cao, Zhengwen
    Chen, Xinlei
    Chai, Geng
    Peng, Jinye
    [J]. LASER PHYSICS LETTERS, 2023, 20 (04)
  • [4] Noiseless linear amplification for the single-photon entanglement of arbitrary polarization-time-bin qudit
    Chen, Ling-Quan
    Sheng, Yu-Bo
    Zhou, Lan
    [J]. CHINESE PHYSICS B, 2019, 28 (01)
  • [5] Heralded-qubit amplifiers for practical device-independent quantum key distribution
    Curty, Marcos
    Moroder, Tobias
    [J]. PHYSICAL REVIEW A, 2011, 84 (01)
  • [6] Secure direct communication with a quantum one-time pad
    Deng, FG
    Long, GL
    [J]. PHYSICAL REVIEW A, 2004, 69 (05): : 052319 - 1
  • [7] Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block
    Deng, FG
    Long, GL
    Liu, XS
    [J]. PHYSICAL REVIEW A, 2003, 68 (04): : 6
  • [8] QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM
    EKERT, AK
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (06) : 661 - 663
  • [9] Implementation of a Nondeterministic Optical Noiseless Amplifier
    Ferreyrol, Franck
    Barbieri, Marco
    Blandino, Remi
    Fossier, Simon
    Tualle-Brouri, Rosa
    Grangier, Philippe
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (12)
  • [10] Long-Distance Measurement-Device-Independent Multiparty Quantum Communication
    Fu, Yao
    Yin, Hua-Lei
    Chen, Teng-Yun
    Chen, Zeng-Bing
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (09)