Real-Time Laryngeal Cancer Boundaries Delineation on White Light and Narrow-Band Imaging Laryngoscopy with Deep Learning

被引:11
|
作者
Sampieri, Claudio [1 ,2 ,3 ]
Azam, Muhammad Adeel [4 ,5 ]
Ioppi, Alessandro [6 ,7 ,8 ,14 ]
Baldini, Chiara [4 ,5 ]
Moccia, Sara [9 ,10 ]
Kim, Dahee [11 ]
Tirrito, Alessandro [6 ,7 ]
Paderno, Alberto [12 ,13 ]
Piazza, Cesare [12 ,13 ]
Mattos, Leonardo S. [4 ]
Peretti, Giorgio [6 ,7 ]
机构
[1] Univ Genoa, Dept Expt Med DIMES, Genoa, Italy
[2] Hosp Clin Barcelona, Funct Unit Head Neck Tumors, Barcelona, Spain
[3] Hosp Clin Barcelona, Otorhinolaryngol Dept, Barcelona, Spain
[4] Ist Italiano Tecnol, Dept Adv Robot, Genoa, Italy
[5] Univ Genoa, Dipartimento Informat Bioingn Robot & Ingn Sistemi, Genoa, Italy
[6] IRCCS Osped Policlin San Martino, Unit Otorhinolaryngol Head & Neck Surg, Genoa, Italy
[7] Univ Genoa, Dept Surg Sci & Integrated Diagnost DISC, Genoa, Italy
[8] Azienda Prov Serv & Sanit APSS, S Chiara Hosp, Dept Otorhinolaryngol Head & Neck Surg, Trento, Italy
[9] Scuola Super Sant Anna, BioRobot Inst, Pisa, Italy
[10] Scuola Super Sant Anna, Dept Excellence Robot & AI, Pisa, Italy
[11] Yonsei Univ, Coll Med, Dept Otorhinolaryngol, Seoul, South Korea
[12] ASST Spedali Civili Brescia, Unit Otorhinolaryngol Head & Neck Surg, Brescia, Italy
[13] Univ Brescia, Dept Med & Surg Specialties Radiol Sci & Publ Hlth, Brescia, Italy
[14] IRCCS Osped Policlin San Martino, Unit Otorhinolaryngol Head & Neck Surg, Largo Rosanna Benzi 10, I-16132 Genoa, Italy
来源
LARYNGOSCOPE | 2024年 / 134卷 / 06期
关键词
artificial intelligence; laryngeal cancer; laryngoscopy; narrow-band imaging; segmentation; white light imaging; TRANSORAL LASER MICROSURGERY; HEAD; MARGINS;
D O I
10.1002/lary.31255
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
ObjectiveTo investigate the potential of deep learning for automatically delineating (segmenting) laryngeal cancer superficial extent on endoscopic images and videos.MethodsA retrospective study was conducted extracting and annotating white light (WL) and Narrow-Band Imaging (NBI) frames to train a segmentation model (SegMENT-Plus). Two external datasets were used for validation. The model's performances were compared with those of two otolaryngology residents. In addition, the model was tested on real intraoperative laryngoscopy videos.ResultsA total of 3933 images of laryngeal cancer from 557 patients were used. The model achieved the following median values (interquartile range): Dice Similarity Coefficient (DSC) = 0.83 (0.70-0.90), Intersection over Union (IoU) = 0.83 (0.73-0.90), Accuracy = 0.97 (0.95-0.99), Inference Speed = 25.6 (25.1-26.1) frames per second. The external testing cohorts comprised 156 and 200 images. SegMENT-Plus performed similarly on all three datasets for DSC (p = 0.05) and IoU (p = 0.07). No significant differences were noticed when separately analyzing WL and NBI test images on DSC (p = 0.06) and IoU (p = 0.78) and when analyzing the model versus the two residents on DSC (p = 0.06) and IoU (Senior vs. SegMENT-Plus, p = 0.13; Junior vs. SegMENT-Plus, p = 1.00). The model was then tested on real intraoperative laryngoscopy videos.ConclusionSegMENT-Plus can accurately delineate laryngeal cancer boundaries in endoscopic images, with performances equal to those of two otolaryngology residents. The results on the two external datasets demonstrate excellent generalization capabilities. The computation speed of the model allowed its application on videolaryngoscopies simulating real-time use. Clinical trials are needed to evaluate the role of this technology in surgical practice and resection margin improvement.Level of EvidenceIII Laryngoscope, 2024 A custom-made algorithm called SegMENT-Plus was trained on 3933 laryngeal carcinoma images obtained by 557 patients. The model achieved Dice similarity coefficient of 0.827, Intersection over the union of 0.828, accuracy of 0.972, and inference speed of 25.6 fps, thus reaching real-time performances. SegMENT-Plus performed similarly on two external validation datasets. The performances of the model showed no significant differences from those obtained by two residents. The implementation of artificial intelligence during laryngoscopy can support clinicians in delineating the superficial extent of laryngeal cancer. SegMENT-Plus showed reliable results, with performances equal to those of two otolaryngology residents and with computation speed.image
引用
收藏
页码:2826 / 2834
页数:9
相关论文
共 50 条
  • [1] Deep Learning Applied to White Light and Narrow Band Imaging Videolaryngoscopy: Toward Real-Time Laryngeal Cancer Detection
    Azam, Muhammad Adeel
    Sampieri, Claudio
    Ioppi, Alessandro
    Africano, Stefano
    Vallin, Alberto
    Mocellin, Davide
    Fragale, Marco
    Guastini, Luca
    Moccia, Sara
    Piazza, Cesare
    Mattos, Leonardo S.
    Peretti, Giorgio
    LARYNGOSCOPE, 2022, 132 (09): : 1798 - 1806
  • [2] Deep Learning for nasopharyngeal Carcinoma Identification Using Both White Light and Narrow-Band Imaging Endoscopy
    Xu, Jianwei
    Wang, Jun
    Bian, Xianzhang
    Zhu, Ji-Qing
    Tie, Cheng-Wei
    Liu, Xiaoqing
    Zhou, Zhiyong
    Ni, Xiao-Guang
    Qian, Dahong
    LARYNGOSCOPE, 2022, 132 (05): : 999 - 1007
  • [3] Objective Comparison of White Light and Narrow-Band Imaging for Detecting Scars, Sulci and Nodules
    Pu, Serena
    Laitman, Benjamin
    Woo, Peak
    LARYNGOSCOPE, 2024, 134 (09): : 4066 - 4070
  • [4] Multi-Instance Learning for Vocal Fold Leukoplakia Diagnosis Using White Light and Narrow-Band Imaging: A Multicenter Study
    Tie, Cheng-Wei
    Li, De-Yang
    Zhu, Ji-Qing
    Wang, Mei-Ling
    Wang, Jian-Hui
    Chen, Bing-Hong
    Li, Ying
    Zhang, Sen
    Liu, Lin
    Guo, Li
    Yang, Long
    Yang, Li-Qun
    Wei, Jiao
    Jiang, Feng
    Zhao, Zhi-Qiang
    Wang, Gui-Qi
    Zhang, Wei
    Zhang, Quan-Mao
    Ni, Xiao-Guang
    LARYNGOSCOPE, 2024, 134 (10): : 4321 - 4328
  • [5] A Systematic Review Evaluating the Diagnostic Efficacy of Narrow-Band Imaging for Laryngeal Cancer Detection
    Sanda, Ileana Alexandra
    Hainarosie, Razvan
    Ionita, Irina Gabriela
    Voiosu, Catalina
    Ristea, Marius Razvan
    Anton, Adina Zamfir Chiru
    MEDICINA-LITHUANIA, 2024, 60 (08):
  • [6] Comparison of White Light With Narrow Band Imaging Using Flexible Laryngoscopy for the Detection of Local Recurrences After (Chemo)Radiation for Pharyngeal or Laryngeal Cancer: A Randomised Controlled Trial
    Scholman, Constanze
    Westra, Jeroen M.
    Zwakenberg, Manon A.
    Wedman, Jan
    van Der Vegt, Bert
    Steenbakkers, Roel J. H. M.
    Oosting, Sjoukje F.
    Halmos, Gyorgy B.
    van Der Laan, Bernard F. A. M.
    Plaat, Boudewijn E. C.
    CLINICAL OTOLARYNGOLOGY, 2025,
  • [7] Vocal Fold Leukoplakia: Which of the Classifications of White Light and Narrow Band Imaging Most Accurately Predicts Laryngeal Cancer Transformation? Proposition for a Diagnostic Algorithm
    Pietruszewska, Wioletta
    Morawska, Joanna
    Rosiak, Oskar
    Leduchowska, Agata
    Klimza, Hanna
    Wierzbicka, Malgorzata
    CANCERS, 2021, 13 (13)
  • [8] Blue-light cystoscopy and narrow-band imaging in bladder cancer management
    Zang, Zhijiang
    Wu, Qinghui
    Chiong, Edmund
    FORMOSAN JOURNAL OF SURGERY, 2019, 52 (05) : 155 - 160
  • [9] An automated approach for real-time informative frames classification in laryngeal endoscopy using deep learning
    Baldini, Chiara
    Azam, Muhammad Adeel
    Sampieri, Claudio
    Ioppi, Alessandro
    Ruiz-Sevilla, Laura
    Vilaseca, Isabel
    Alegre, Berta
    Tirrito, Alessandro
    Pennacchi, Alessia
    Peretti, Giorgio
    Moccia, Sara
    Mattos, Leonardo S.
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2024, 281 (08) : 4255 - 4264
  • [10] Real-Time Artificial Intelligence-Based Histologic Classifications of Colorectal Polyps Using Narrow-Band Imaging
    Lu, Yi
    Wu, Jiachuan
    Zhuo, Xianhua
    Hu, Minhui
    Chen, Yongpeng
    Luo, Yuxuan
    Feng, Yue
    Zhi, Min
    Li, Chujun
    Sun, Jiachen
    FRONTIERS IN ONCOLOGY, 2022, 12