Cascaded detection method for surface defects of lead frame based on high-resolution detection images

被引:11
作者
Sun, Tingrui [1 ]
Li, Zhiwei [1 ,2 ]
Xiao, Xinjie [1 ]
Guo, Zhihui [1 ]
Ning, Wenle [1 ]
Ding, Tingting [1 ]
机构
[1] Shanghai Univ Engn Sci, Coll Elect & Elect Engn, Shanghai 201620, Peoples R China
[2] Shanghai Technol & Innovat Vocat Coll, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Lead frame; Surface defect detection; Deep learning; High-resolution image; Machine vision; INSPECTION SYSTEM;
D O I
10.1016/j.jmsy.2023.11.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the field of semiconductor production and manufacturing, the detection of defects on lead frame surfaces is a vital process. This process plays a key role in ensuring the quality of the final product. Using high-resolution detection images to detect multi-scale tiny surface defects is necessary, but this amplifies the impact of environmental noise. Therefore, suppressing both the false negative rate and false positive rate in practical detection scenarios is a challenge that needs to be overcome. Current research on lead frame surface defect detection is mostly concentrated on the downloaded standard original images, which limits its application in actual production lines. This paper presents a cascaded detection method for surface defects of lead frame based on high-resolution detection images. Firstly, this study presents the unit cell extraction module to convert the detection object from high-resolution image to hundreds of unit cells. The proposed module can handle real-time detection images in the production pipeline, especially addressing situations such as lighting imbalances and tilted detection images. Subsequently, this study proposes a lead frame surface defect detection network (LDD-net), which takes unit cells as inputs and can effectively detect multi-scale defects. Compared to other models, LDD-net can effectively capture the features of subtle defects. Additionally, this paper introduces the deviation in the central width direction into the CIoU localization loss, enhancing the accuracy of defect localization in LDD-net. The data set is constructed using the machine vision detection system and conducts training and testing. Specifically, experiments of LDD-net on the data set obtained 85.01% mean average precision (mAP) and 37 ms of inference time, respectively. The detection accuracy exceeds 95%, and the false negative rate can be controlled below 6%. This approach will assist manual monitoring personnel in evaluating product quality.
引用
收藏
页码:180 / 195
页数:16
相关论文
共 50 条
  • [21] A Survey on Deep Learning-Based Change Detection from High-Resolution Remote Sensing Images
    Jiang, Huiwei
    Peng, Min
    Zhong, Yuanjun
    Xie, Haofeng
    Hao, Zemin
    Lin, Jingming
    Ma, Xiaoli
    Hu, Xiangyun
    REMOTE SENSING, 2022, 14 (07)
  • [22] Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images
    Li, Weijia
    Fu, Haohuan
    Yu, Le
    Cracknell, Arthur
    REMOTE SENSING, 2017, 9 (01)
  • [23] Urban Change Detection for High-resolution Satellite Images Using U-Net Based on SPADE
    Song, Changwoo
    Wahyu, Wiratama
    Jung, Jihun
    Hong, Seongjae
    Kim, Daehee
    Kang, Joohyung
    KOREAN JOURNAL OF REMOTE SENSING, 2020, 36 (06) : 1579 - 1590
  • [24] Two-Stage Deep Learning Method for Breast Cancer Detection Using High-Resolution Mammogram Images
    Ibrokhimov, Bunyodbek
    Kang, Justin-Youngwook
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [25] R-YOLO: A YOLO-Based Method for Arbitrary-Oriented Target Detection in High-Resolution Remote Sensing Images
    Hou, Yongjie
    Shi, Gang
    Zhao, Yingxiang
    Wang, Fan
    Jiang, Xian
    Zhuang, Rujun
    Mei, Yunfei
    Ma, Xinjiang
    SENSORS, 2022, 22 (15)
  • [26] TD-YOLO: A Lightweight Detection Algorithm for Tiny Defects in High-Resolution PCBs
    Ling, Qin
    Isa, Nor Ashidi Mat
    ADVANCED THEORY AND SIMULATIONS, 2024, 7 (04)
  • [27] Ship Detection in High-Resolution Optical Remote Sensing Images Aided by Saliency Information
    Ren, Zhida
    Tang, Yongqiang
    He, Zewen
    Tian, Lei
    Yang, Yang
    Zhang, Wensheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [28] A Systematic Scheme for Automatic Airplane Detection from High-Resolution Remote Sensing Images
    Zhao, Jiao
    Han, Jing
    Feng, Chen
    Yao, Jian
    IMAGE AND VIDEO TECHNOLOGY (PSIVT 2017), 2018, 10799 : 465 - 478
  • [29] SASOD: Saliency-Aware Ship Object Detection in High-Resolution Optical Images
    Ren, Zhida
    Tang, Yongqiang
    Yang, Yang
    Zhang, Wensheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [30] Intelligent Detection of Marine Offshore Aquaculture with High-Resolution Optical Remote Sensing Images
    Dong, Di
    Shi, Qingxiang
    Hao, Pengcheng
    Huang, Huamei
    Yang, Jia
    Guo, Bingxin
    Gao, Qing
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (06)