Spectral radius and rainbow matchings of graphs

被引:2
|
作者
Guo, Mingyang [1 ]
Lu, Hongliang [1 ]
Ma, Xinxin [1 ]
Ma, Xiao [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Matching; Rainbow matching; Spectral radius; SIZE;
D O I
10.1016/j.laa.2023.09.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n, m be integers such that 1 <= m <= (n - 2)/2 and let [n] = {1, ..., n}. Let G = {G1, . . . , G(m+1)} be a family of graphs on the same vertex set [n]. In this paper, we prove that if for any i is an element of [m + 1], the spectral radius of G(i) is not less than max{2m, 1/2 (m -1 + root(m - 1)(2 )+ 4m(n - m))}, then G admits a rainbow matching, i.e. a choice of disjoint edges e(i) is an element of Gi, unless G(1) = G(2) = ... = G(m+1) and G(1) is an element of {K2m+1 boolean OR (n -2m - 1)K-1, K-m V (n - m)K-1}.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:30 / 37
页数:8
相关论文
共 50 条
  • [21] Spectral radius and Hamiltonicity of graphs
    Fiedler, Miroslav
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) : 2170 - 2173
  • [22] Spectral radius of bipartite graphs
    Liu, Chia-an
    Weng, Chih-wen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 474 : 30 - 43
  • [23] On the spectral radius of bipartite graphs
    Fan, Dandan
    Wang, Guoping
    Zao, Yuying
    UTILITAS MATHEMATICA, 2020, 114 : 3 - 12
  • [24] Walks and the spectral radius of graphs
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (01) : 257 - 268
  • [25] On the Laplacian Spectral Radius of Graphs
    Xu, Guanghui
    Xu, Changqing
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 164 - 167
  • [26] Toughness and spectral radius in graphs
    Chen, Yuanyuan
    Fan, Dandan
    Lin, Huiqiu
    DISCRETE MATHEMATICS, 2024, 347 (12)
  • [27] SPECTRAL RADIUS AND HAMILTONICITY OF GRAPHS
    Yu, Guidong
    Fang, Yi
    Fan, Yizheng
    Cai, Gaixiang
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (04) : 951 - 974
  • [28] A conjecture on the spectral radius of graphs
    Sun, Shaowei
    Das, Kinkar Chandra
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 588 (588) : 74 - 80
  • [29] Spectral radius and Hamiltonian graphs
    Lu, Mei
    Liu, Huiqing
    Tian, Feng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (07) : 1670 - 1674
  • [30] The spectral radius of irregular graphs
    Shi, Lingsheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (1-2) : 189 - 196