ELECTRONIC STRUCTURE AND CHEMICAL BONDING IN EsO2

被引:0
作者
Teterin, Y. A. [1 ,2 ]
Ryzhkov, M. V. [3 ]
Putkov, A. E. [1 ]
Maslakov, K. I. [1 ]
Teterin, A. Y. [2 ]
Ivanov, K. E. [2 ]
Kalmykov, S. N. [1 ]
Petrov, V. G. [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow, Russia
[2] Natl Res Ctr Kurchatov Inst, Moscow, Russia
[3] Russian Acad Sci, Inst Solid State Chem, Urals Branch, Ekaterinburg, Russia
关键词
actinide dioxides; EsO2; electronic structure; outer valence (OVMO) and inner valence (IVMO) molecular orbitals; DVM method; structure of XPS valence band spectra; MOLECULES; ACTINIDES; SPECTRA;
D O I
10.1134/S0022476623090081
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The density of states of valence electrons of the EsO2 dioxide is calculated by the relativistic discrete variational method. The scheme of valence molecular orbitals (MOs) is constructed taking into account the photoelectric effect cross sections of valence electrons. The histogram of X-ray photoelectron spectra (XPS) is built for the electron binding energies from 0 eV to similar to 40 eV. It is shown that the structure of this spectrum contains contributions of outer valence orbitals (OVMOs, from 0 eV to similar to 15 eV) and inner valence orbitals (IVMOs, from similar to 15 eV to similar to 50 eV) molecular orbitals. It is established that Es 5f and Es 6p electrons participate in the chemical bonding. It is established that not only Es 6d, but also Es 6p and Es 5f orbitals overlap significantly with ligand orbitals, resulting in a highly covalent chemical bonding in this dioxide. The nature of chemical bonding and the structure of the XPS spectrum of valence electrons in EsO2 is clarified using the scheme of MOs. It is shown that the chemical bonding formed by OVMO electrons is weaken by one third due to IVMO electrons.
引用
收藏
页码:1644 / 1653
页数:10
相关论文
共 50 条
  • [21] TITANIUM CARBONITRIDES, TI(C,N) - ELECTRONIC-STRUCTURE AND CHEMICAL BONDING
    GUSTENAUMICHALEK, E
    HERZIG, P
    NECKEL, A
    JOURNAL OF ALLOYS AND COMPOUNDS, 1995, 219 (1-2) : 303 - 306
  • [22] Electronic structure, Fermi surface, and chemical bonding in new layered oxyselenide: HgCuSeO
    Bannikov, V. V.
    Shein, I. R.
    Ivanovskii, A. L.
    JOURNAL OF STRUCTURAL CHEMISTRY, 2012, 53 (04) : 634 - 638
  • [23] Probing the electronic structure and Au-C chemical bonding in AuC2- and AuC2 using high-resolution photoelectron spectroscopy
    Leon, Iker
    Yang, Zheng
    Wang, Lai-Sheng
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (08)
  • [24] Modeling of the electronic structure, chemical bonding, and properties of ternary silicon carbide Ti3SiC2
    Medvedeva, N. I.
    Enyashin, A. N.
    Ivanovskii, A. L.
    JOURNAL OF STRUCTURAL CHEMISTRY, 2011, 52 (04) : 785 - 802
  • [25] Modeling of the electronic structure, chemical bonding, and properties of ternary silicon carbide Ti3SiC2
    N. I. Medvedeva
    A. N. Enyashin
    A. L. Ivanovskii
    Journal of Structural Chemistry, 2011, 52
  • [26] Electronic structure and bonding in BaNi2P4
    Palacios, AA
    Alemany, P
    Alvarez, S
    Hoffmann, R
    ANALES DE QUIMICA-INTERNATIONAL EDITION, 1997, 93 (06): : 385 - 393
  • [27] ELECTRONIC STRUCTURE OF NoO2
    Teterin, Yu. A.
    Ryzhkov, M. V.
    Putkov, A. E.
    Maslakov, K. I.
    Teterin, A. Yu.
    Ivanov, K. E.
    Kalmykov, S. N.
    Petrov, V. G.
    JOURNAL OF STRUCTURAL CHEMISTRY, 2024, 65 (09) : 1794 - 1804
  • [28] Electronic structure and chemical bonding in alkaline earth metal subnitrides: Photoemission studies and band structure calculations
    Steinbrenner, U
    Adler, P
    Holle, W
    Simon, A
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1998, 59 (09) : 1527 - 1536
  • [29] X-RAY PHOTOELECTRON SPECTRA STRUCTURE AND CHEMICAL BONDING IN AmO2
    Teterin, Yury A.
    Maslakov, Konstantin I.
    Ryzhkov, Mikhail V.
    Teterin, Anton Yu
    Ivanov, Kirill E.
    Kalmykov, Stepan N.
    Petrov, Vladimir G.
    NUCLEAR TECHNOLOGY & RADIATION PROTECTION, 2015, 30 (02) : 83 - 98
  • [30] Electronic structure and chemical bonding of nanocrystalline-TiC/amorphous-C nanocomposites
    Magnuson, Martin
    Lewin, Erik
    Hultman, Lars
    Jansson, Ulf
    PHYSICAL REVIEW B, 2009, 80 (23)