On Laplacian Eigenvalues of Wheel Graphs

被引:1
作者
Alotaibi, Manal [1 ]
Alghamdi, Ahmad [2 ]
Alolaiyan, Hanan [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Mthemat, POB 2455, Riyadh 11451, Saudi Arabia
[2] Umm Al Qura Univ, Fac Appl Sci, Dept Math Sci, POB 14035, Mecca 21955, Saudi Arabia
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 09期
关键词
Laplacian eigenvalues; wheel graph; Grone-Merris-Bai theorem; Brouwer's conjecture; symmetry of wheel graphs; automorphism group of graphs; FULLERENES; SPECTRA; INDEX; C60;
D O I
10.3390/sym15091737
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Consider G to be a simple graph with n vertices and m edges, and L(G) to be a Laplacian matrix with Laplacian eigenvalues of & mu;1,& mu;2, horizontal ellipsis ,& mu;n=zero. Write Sk(G)= n-ary sumation i=1k & mu;i as the sum of the k-largest Laplacian eigenvalues of G, where k & ISIN;{1,2, horizontal ellipsis ,n}. The motivation of this study is to solve a conjecture in algebraic graph theory for a special type of graph called a wheel graph. Brouwer's conjecture states that Sk(G)& LE;m+k+12, where k=1,2, horizontal ellipsis ,n. This paper proves Brouwer's conjecture for wheel graphs. It also provides an upper bound for the sum of the largest Laplacian eigenvalues for the wheel graph Wn+1, which provides a better approximation for this upper bound using Brouwer's conjecture and the Grone-Merris-Bai inequality. We study the symmetry of wheel graphs and recall an example of the symmetry group of Wn+1, n & GE;3. We obtain our results using majorization methods and illustrate our findings in tables, diagrams, and curves.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] BOUNDS FOR LAPLACIAN GRAPH EIGENVALUES
    Maden, A. Dilek
    Buyukkose, Serife
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (03): : 529 - 536
  • [42] On the sum of the Laplacian eigenvalues of a tree
    Fritscher, Eliseu
    Hoppen, Carlos
    Rocha, Israel
    Trevisan, Vilmar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (02) : 371 - 399
  • [43] Laplacian eigenvalues and the excess of a graph
    Rodríguez, JA
    Yebra, JLA
    ARS COMBINATORIA, 2002, 64 : 249 - 258
  • [44] Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs
    Bu, Changjiang
    Fan, Yamin
    Zhou, Jiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (03) : 511 - 520
  • [45] ON THE EIGENVALUES OF FIREFLY GRAPHS
    Hong, W. X.
    You, L. H.
    TRANSACTIONS ON COMBINATORICS, 2014, 3 (03) : 1 - 9
  • [46] A note on the eigenvalues of graphs
    Feng, Lihua
    Yu, Guihai
    ARS COMBINATORIA, 2010, 94 : 221 - 227
  • [47] Coronae Graphs and Their α-Eigenvalues
    Tahir, Muhammad Ateeq
    Zhang, Xiao-Dong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (04) : 2911 - 2927
  • [48] On a Lower Bound for the Laplacian Eigenvalues of a Graph
    Gary R. W. Greaves
    Akihiro Munemasa
    Anni Peng
    Graphs and Combinatorics, 2017, 33 : 1509 - 1519
  • [49] ON THE SUM OF THE K LARGEST ABSOLUTE VALUES OF LAPLACIAN EIGENVALUES OF DIGRAPHS
    Yang, Xiuwen
    Liu, Xiaogang
    Wang, Ligong
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2023, 39 : 409 - 422
  • [50] COMPUTING EIGENVALUES OF THE LAPLACIAN ON ROUGH DOMAINS
    Osler, Frank R.
    Stepanenko, Alexei
    MATHEMATICS OF COMPUTATION, 2023, : 111 - 161