On Laplacian Eigenvalues of Wheel Graphs

被引:1
作者
Alotaibi, Manal [1 ]
Alghamdi, Ahmad [2 ]
Alolaiyan, Hanan [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Mthemat, POB 2455, Riyadh 11451, Saudi Arabia
[2] Umm Al Qura Univ, Fac Appl Sci, Dept Math Sci, POB 14035, Mecca 21955, Saudi Arabia
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 09期
关键词
Laplacian eigenvalues; wheel graph; Grone-Merris-Bai theorem; Brouwer's conjecture; symmetry of wheel graphs; automorphism group of graphs; FULLERENES; SPECTRA; INDEX; C60;
D O I
10.3390/sym15091737
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Consider G to be a simple graph with n vertices and m edges, and L(G) to be a Laplacian matrix with Laplacian eigenvalues of & mu;1,& mu;2, horizontal ellipsis ,& mu;n=zero. Write Sk(G)= n-ary sumation i=1k & mu;i as the sum of the k-largest Laplacian eigenvalues of G, where k & ISIN;{1,2, horizontal ellipsis ,n}. The motivation of this study is to solve a conjecture in algebraic graph theory for a special type of graph called a wheel graph. Brouwer's conjecture states that Sk(G)& LE;m+k+12, where k=1,2, horizontal ellipsis ,n. This paper proves Brouwer's conjecture for wheel graphs. It also provides an upper bound for the sum of the largest Laplacian eigenvalues for the wheel graph Wn+1, which provides a better approximation for this upper bound using Brouwer's conjecture and the Grone-Merris-Bai inequality. We study the symmetry of wheel graphs and recall an example of the symmetry group of Wn+1, n & GE;3. We obtain our results using majorization methods and illustrate our findings in tables, diagrams, and curves.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] On graphs with at most three Laplacian eigenvalues greater than or equal to two
    Petrovic, M
    Borovicanin, B
    Torgasev, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 380 : 173 - 184
  • [32] On Brouwer's conjecture for the sum of k largest Laplacian eigenvalues of graphs
    Chen, Xiaodan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 578 : 402 - 410
  • [33] Further developments on Brouwer's conjecture for the sum of Laplacian eigenvalues of graphs
    Ganie, Hilal A.
    Pirzada, S.
    Rather, Bilal A.
    Trevisan, Vilmar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 588 : 1 - 18
  • [34] On bipartite graphs with small number of Laplacian eigenvalues greater than two and three
    Petrovic, M
    Gutman, I
    Lepovic, M
    Milekic, B
    LINEAR & MULTILINEAR ALGEBRA, 2000, 47 (03) : 205 - 215
  • [35] The sum of the first two largest signless laplacian eigenvalues of trees and unicyclic graphs
    Du, Zhibin
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 449 - 467
  • [36] The sum of the k largest distance eigenvalues of graphs
    Zhang, Yuke
    Lin, Huiqiu
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [37] Cut ratios and Laplacian eigenvalues
    Nica, Bogdan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 593 : 18 - 28
  • [38] On the distribution of Laplacian eigenvalues of trees
    Braga, Rodrigo O.
    Rodrigues, Virginia M.
    Trevisan, Vilmar
    DISCRETE MATHEMATICS, 2013, 313 (21) : 2382 - 2389
  • [39] Laplacian eigenvalues of equivalent cographs
    Lazzarin, Joao
    Sosa, Oscar F.
    Tura, Fernando C.
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (06) : 1003 - 1014
  • [40] On a conjecture for the sum of Laplacian eigenvalues
    Wang, Shouzhong
    Huang, Yufei
    Liu, Bolian
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 56 (3-4) : 60 - 68