On Laplacian Eigenvalues of Wheel Graphs

被引:1
|
作者
Alotaibi, Manal [1 ]
Alghamdi, Ahmad [2 ]
Alolaiyan, Hanan [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Mthemat, POB 2455, Riyadh 11451, Saudi Arabia
[2] Umm Al Qura Univ, Fac Appl Sci, Dept Math Sci, POB 14035, Mecca 21955, Saudi Arabia
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 09期
关键词
Laplacian eigenvalues; wheel graph; Grone-Merris-Bai theorem; Brouwer's conjecture; symmetry of wheel graphs; automorphism group of graphs; FULLERENES; SPECTRA; INDEX; C60;
D O I
10.3390/sym15091737
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Consider G to be a simple graph with n vertices and m edges, and L(G) to be a Laplacian matrix with Laplacian eigenvalues of & mu;1,& mu;2, horizontal ellipsis ,& mu;n=zero. Write Sk(G)= n-ary sumation i=1k & mu;i as the sum of the k-largest Laplacian eigenvalues of G, where k & ISIN;{1,2, horizontal ellipsis ,n}. The motivation of this study is to solve a conjecture in algebraic graph theory for a special type of graph called a wheel graph. Brouwer's conjecture states that Sk(G)& LE;m+k+12, where k=1,2, horizontal ellipsis ,n. This paper proves Brouwer's conjecture for wheel graphs. It also provides an upper bound for the sum of the largest Laplacian eigenvalues for the wheel graph Wn+1, which provides a better approximation for this upper bound using Brouwer's conjecture and the Grone-Merris-Bai inequality. We study the symmetry of wheel graphs and recall an example of the symmetry group of Wn+1, n & GE;3. We obtain our results using majorization methods and illustrate our findings in tables, diagrams, and curves.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Characterization of extremal graphs from Laplacian eigenvalues and the sum of powers of the Laplacian eigenvalues of graphs
    Chen, Xiaodan
    Das, Kinkar Ch.
    DISCRETE MATHEMATICS, 2015, 338 (07) : 1252 - 1263
  • [2] On Laplacian eigenvalues of connected graphs
    Igor Ž. Milovanović
    Emina I. Milovanović
    Edin Glogić
    Czechoslovak Mathematical Journal, 2015, 65 : 529 - 535
  • [3] Distribution of Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Mojallal, Seyed Ahmad
    Trevisan, Vilmar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 508 : 48 - 61
  • [4] On Laplacian eigenvalues of connected graphs
    Milovanovic, Igor Z.
    Milovanovic, Emina I.
    Glogic, Edin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (02) : 529 - 535
  • [5] Bounding the sum of the largest Laplacian eigenvalues of graphs
    Rocha, I.
    Trevisan, V.
    DISCRETE APPLIED MATHEMATICS, 2014, 170 : 95 - 103
  • [6] Bounding the sum of powers of the Laplacian eigenvalues of graphs
    Chen Xiao-dan
    Qian Jian-guo
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2011, 26 (02) : 142 - 150
  • [7] On sum of powers of the Laplacian eigenvalues of graphs
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) : 2239 - 2246
  • [8] On the Multiplicity of Laplacian Eigenvalues for Unicyclic Graphs
    Wen, Fei
    Huang, Qiongxiang
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (02) : 371 - 390
  • [9] On sum of powers of the Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Xu, Kexiang
    Liu, Muhuo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (11) : 3561 - 3575
  • [10] Computing the sum of k largest Laplacian eigenvalues of tricyclic graphs
    Kumar, Pawan
    Merajuddin, S.
    Pirzada, Shariefuddin
    DISCRETE MATHEMATICS LETTERS, 2023, 11 : 14 - 18