Continuity for the one-dimensional centered Hardy-Littlewood maximal operator at the derivative level

被引:4
作者
Gonzalez-Riquelme, Cristian [1 ]
机构
[1] Inst Super Tecn, Dept Matemat, Av Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Maximal operators; Continuity; SOBOLEV;
D O I
10.1016/j.jfa.2023.110097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the continuity of the map f & RARR; (Mf)' from W1,1(R) to L1(R), where M is the centered Hardy-Littlewood maximal operator. This solves a question posed by Carneiro, Madrid and Pierce. & COPY; 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页数:14
相关论文
共 23 条
  • [1] Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities
    Aldaz, J. M.
    Perez Lazaro, J.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (05) : 2443 - 2461
  • [2] Beltran D., 2021, ARXIV
  • [3] Regularity of the centered fractional maximal function on radial functions
    Beltran, David
    Madrid, Jose
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (08)
  • [4] Endpoint Sobolev Continuity of the Fractional Maximal Function in Higher Dimensions
    Beltran, David
    Madrid, Jose
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (22) : 17316 - 17342
  • [5] On the variation of maximal operators of convolution type
    Cameiro, Emanuel
    Svaiter, Benar F.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (05) : 837 - 865
  • [6] SUNRISE STRATEGY FOR THE CONTINUITY OF MAXIMAL OPERATORS
    Carneiro, Emanuel
    Gonzalez-Riquelme, Cristian
    Madrid, Jose
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2022, 148 (01): : 37 - 84
  • [7] GRADIENT BOUNDS FOR RADIAL MAXIMAL FUNCTIONS
    Carneiro, Emanuel
    Gonzalez-Riquelme, Cristian
    [J]. ANNALES FENNICI MATHEMATICI, 2021, 46 (01): : 495 - 521
  • [8] On the variation of maximal operators of convolution type II
    Carneiro, Emanuel
    Finder, Renan
    Sousa, Mateus
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (02) : 739 - 766
  • [9] Endpoint Sobolev and BV continuity for maximal operators
    Carneiro, Emanuel }
    Madrid, Jose
    Pierce, Lillian B.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (10) : 3262 - 3294
  • [10] DERIVATIVE BOUNDS FOR FRACTIONAL MAXIMAL FUNCTIONS
    Carneiro, Emanuel
    Madrid, Jose
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (06) : 4063 - 4092