HORIZONTAL LIFTS OF THE GOLDEN STRUCTURES FROM A MANIFOLD TO ITS TANGENT BUNDLE

被引:0
|
作者
Verma, Geeta [1 ]
Shukla, Prashant K. [1 ]
机构
[1] Shri Ramswaroop Mem Grp Profess Coll, Dept Math, Lucknow, India
来源
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS | 2023年 / 38卷 / 01期
关键词
golden structure; tangent bundle; vertical lift; horizontal lift; almost ana-lytic vector field; projection tensor; Nijenhuis tensor; Lie derivative; SYMMETRIC NONMETRIC CONNECTION; METALLIC STRUCTURE;
D O I
10.22190/FUMI221012007V
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper aims to investigate 'the horizontal lift' of J satisfying J2 - J - I = 0 and demonstrate its status as a type of golden structure. The Nijenhuis tensor N* of the horizontal lift JH on the tangent bundle is determined. Also, a tensor field J & SIM; of type (1,1) is studied and shown to be golden structure on the tangent bundle. Furthermore, several conclusions regarding the Nijenhuis tensor and the Lie derivative of the golden structure J & SIM; on the tangent bundle are deduced. Moreover, a study is done on the golden structure J & SIM; on the tangent bundle that is equipped with projection operators l & SIM; and & SIM;m. Finally, we construct an example of it.
引用
收藏
页码:97 / 107
页数:11
相关论文
共 50 条
  • [41] LIFTS OF (0,2) TENSOR FIELDS IN THE SEMI-TANGENT BUNDLE
    Yildirim, F.
    Simsek, M.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (04): : 866 - 876
  • [42] Semisymmetric Horizontal Lifts of Linear Connections from the Base to the Bundle of Doubly Covariant Tensors
    Sultanov A.Y.
    Monakhova O.A.
    Journal of Mathematical Sciences, 2023, 276 (4) : 563 - 569
  • [43] PROLONGATION OF G-STRUCTURES IMMERSED IN THE GOLDEN STRUCTURE TO TANGENT
    Kankarej, Manisha M.
    Verma, Geeta
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (05): : 1039 - 1049
  • [44] Some new geometric structures on the tangent bundle
    Oproiu, V
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1999, 55 (3-4): : 261 - 281
  • [45] Tensor fields of type (0, 2) on the tangent bundle of a Riemannian manifold
    Calvo, MD
    Keilhauer, GGR
    GEOMETRIAE DEDICATA, 1998, 71 (02) : 209 - 219
  • [46] Tensor Fields of Type (0, 2) on the Tangent Bundle of a Riemannian Manifold
    Maria del Carmen Calvo
    Guillermo G. R. Keilhauer
    Geometriae Dedicata, 1998, 71 : 209 - 219
  • [47] QUARTER-SYMMETRIC METRIC CONNECTION ON TANGENT BUNDLE OF NORDEN MANIFOLD
    Akpinar, Rabia Cakan
    Okyay, Harun Cagatay
    JOURNAL OF SCIENCE AND ARTS, 2021, (03): : 647 - 658
  • [48] CURVATURES OF TANGENT BUNDLE OF FINSLER MANIFOLD WITH CHEEGER-GROMOLL METRIC
    Raei, Zohre
    Latifi, Dariush
    MATEMATICKI VESNIK, 2018, 70 (02): : 134 - 146
  • [49] Geodesicity and isoclinity properties for the tangent bundle of the Heisenberg manifold with Sasaki metric
    Druta, Simona-Luiza
    Piu, Paola
    TURKISH JOURNAL OF MATHEMATICS, 2012, 36 (02) : 331 - 343
  • [50] HORIZONTAL LIFTS OF SOME GEOMETRIC OBJECTS TO THE BUNDLE OF PAIRS OF VOLUME FORMS
    Gasior, Anna
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2013, 59 (02): : 357 - 372