Few-Shot Learning for Issue Report Classification

被引:9
|
作者
Colavito, Giuseppe [1 ]
Lanubile, Filippo [1 ]
Novielli, Nicole [1 ]
机构
[1] Univ Bari, Bari, Italy
关键词
D O I
10.1109/NLBSE59153.2023.00011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe our participation in the tool competition in the scope of the 2nd International Workshop on Natural Language-based Software Engineering. We propose a supervised approach relying on SETFIT, a framework for few-shot learning and sentence-BERT (SBERT), a variant of BERT for effective sentence embedding. We experimented with different settings, achieving the best performance by training and testing the SETFIT-based model on a subset of data with manually verified labels (F1-micro =.8321). For the sake of the challenge, we evaluate the SETFIT model on the challenge test set, achieving F1-micro =.7767.
引用
收藏
页码:16 / 19
页数:4
相关论文
共 50 条
  • [41] Towards Contextual Learning in Few-shot Object Classification
    Fortin, Mathieu Page
    Chaib-draa, Brahim
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 3278 - 3287
  • [42] Federated Learning and Optimization for Few-Shot Image Classification
    Zuo, Yi
    Chen, Zhenping
    Feng, Jing
    Fan, Yunhao
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (03): : 4649 - 4667
  • [43] Learning to Calibrate Prototypes for Few-Shot Image Classification
    Liang, Chenchen
    Jiang, Chenyi
    Wang, Shidong
    Zhang, Haofeng
    COGNITIVE COMPUTATION, 2025, 17 (01)
  • [44] A review of few-shot classification
    Lim, Jia Min
    Lim, Kian Ming
    Lee, Chin Poo
    Lim, Jit Yan
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 275
  • [45] Knowledge Distillation Meets Few-Shot Learning: An Approach for Few-Shot Intent Classification Within and Across Domains
    Sauer, Anna
    Asaadi, Shima
    Kuech, Fabian
    PROCEEDINGS OF THE 4TH WORKSHOP ON NLP FOR CONVERSATIONAL AI, 2022, : 108 - 119
  • [46] Fast Few-Shot Classification by Few-Iteration Meta-Learning
    Tripathi, Ardhendu Shekhar
    Danelljan, Martin
    Van Gool, Luc
    Timofte, Radu
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 9522 - 9528
  • [47] Few-Shot Learning for Chinese Legal Controversial Issues Classification
    Fang, Yin
    Tian, Xin
    Wu, Hao
    Gu, Songyuan
    Wang, Zhu
    Wang, Feng
    Li, Junliang
    Weng, Yang
    IEEE ACCESS, 2020, 8 : 75022 - 75034
  • [48] Supervised Graph Contrastive Learning for Few-Shot Node Classification
    Tan, Zhen
    Ding, Kaize
    Guo, Ruocheng
    Liu, Huan
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II, 2023, 13714 : 394 - 411
  • [49] Medical Tumor Image Classification Based on Few-Shot Learning
    Wang, Wenyan
    Li, Yongtao
    Lu, Kun
    Zhang, Jun
    Chen, Peng
    Yan, Ke
    Wang, Bing
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (04) : 715 - 724
  • [50] Meta-Learning for Few-Shot Land Cover Classification
    Russwurm, Marc
    Wang, Sherrie
    Koerner, Marco
    Lobell, David
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 788 - 796