Few-Shot Learning for Issue Report Classification

被引:13
作者
Colavito, Giuseppe [1 ]
Lanubile, Filippo [1 ]
Novielli, Nicole [1 ]
机构
[1] Univ Bari, Bari, Italy
来源
2023 IEEE/ACM 2ND INTERNATIONAL WORKSHOP ON NATURAL LANGUAGE-BASED SOFTWARE ENGINEERING, NLBSE | 2023年
关键词
D O I
10.1109/NLBSE59153.2023.00011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe our participation in the tool competition in the scope of the 2nd International Workshop on Natural Language-based Software Engineering. We propose a supervised approach relying on SETFIT, a framework for few-shot learning and sentence-BERT (SBERT), a variant of BERT for effective sentence embedding. We experimented with different settings, achieving the best performance by training and testing the SETFIT-based model on a subset of data with manually verified labels (F1-micro =.8321). For the sake of the challenge, we evaluate the SETFIT model on the challenge test set, achieving F1-micro =.7767.
引用
收藏
页码:16 / 19
页数:4
相关论文
共 27 条
[1]  
Antoniol G., 2008, P 2008 C CTR ADV STU, P304
[2]   GitHub Issue Classification Using BERT-Style Models [J].
Bharadwaj, Shikhar ;
Kadam, Tushar .
2022 IEEE/ACM 1ST INTERNATIONAL WORKSHOP ON NATURAL LANGUAGE-BASED SOFTWARE ENGINEERING (NLBSE 2022), 2022, :40-43
[3]  
Bojanowski P, 2017, Arxiv, DOI arXiv:1607.04606
[4]  
Colavito G., 2023, FEW SHOT LEARNING IS
[5]  
Colavito Giuseppe, 2023, Zenodo, DOI 10.5281/ZENODO.7628150
[6]   Issue Report Classification Using Pre-trained Language Models [J].
Colavito, Giuseppe ;
Lanubile, Filippo ;
Novielli, Nicole .
2022 IEEE/ACM 1ST INTERNATIONAL WORKSHOP ON NATURAL LANGUAGE-BASED SOFTWARE ENGINEERING (NLBSE 2022), 2022, :29-32
[7]  
Dean J., 2020, WORKSH P INT C LEARN
[8]  
Devlin J, 2019, Arxiv, DOI arXiv:1810.04805
[9]   Catlss: An Intelligent Tool for Categorizing Issues Reports using Transformers [J].
Izadi, Maliheh .
2022 IEEE/ACM 1ST INTERNATIONAL WORKSHOP ON NATURAL LANGUAGE-BASED SOFTWARE ENGINEERING (NLBSE 2022), 2022, :44-47
[10]   Predicting the objective and priority of issue reports in software repositories [J].
Izadi, Maliheh ;
Akbari, Kiana ;
Heydarnoori, Abbas .
EMPIRICAL SOFTWARE ENGINEERING, 2022, 27 (02)