Mild SARS-CoV-2 infection results in long-lasting microbiota instability

被引:17
作者
Upadhyay, Vaibhav [1 ,2 ,3 ]
Suryawanshi, Rahul K. [4 ]
Tasoff, Preston [3 ]
McCavitt-Malvido, Maria [4 ]
Kumar, Renuka G. [4 ]
Murray, Victoria Wong [2 ]
Noecker, Cecilia [1 ,3 ]
Bisanz, Jordan E. [1 ]
Hswen, Yulin [5 ,6 ]
Ha, Connie W. Y. [3 ]
Sreekumar, Bharath [4 ]
Chen, Irene P. [4 ]
Lynch, Susan V. [2 ,3 ,7 ]
Ott, Melanie [2 ,4 ,8 ]
Lee, Sulggi [2 ]
Turnbaugh, Peter J. [1 ,3 ,8 ]
机构
[1] Univ Calif San Francisco, GW Hooper Res Fdn, Dept Microbiol & Immunol, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Med, San Francisco, CA USA
[3] Univ Calif Richmond, Benioff Ctr Microbiome Med, Dept Med, Richmond, CA 94804 USA
[4] Gladstone Inst, San Francisco, CA USA
[5] Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA USA
[6] Univ Calif San Francisco, Bakar Computat Hlth Inst, San Francisco, CA USA
[7] Univ Calif San Francisco, Dept Pediat, San Francisco, CA USA
[8] Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94103 USA
关键词
COVID-19; SARS-CoV-2; non-hospitalized patients; human gut microbiome; gastrointestinal symptoms; microbial ecology; GUT MICROBIOTA; COVID-19; IMMUNITY;
D O I
10.1128/mbio.00889-23
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Taken together, our results demonstrate that even mild cases of SARS-CoV-2 can disrupt gut microbial ecology. Our findings in non-hospitalized individuals are consistent with studies of hospitalized patients, in that reproducible shifts in gut microbial taxonomic abundance in response to SARS-CoV-2 have been difficult to identify. Instead, we report a long-lasting instability in the gut microbiota. Surprisingly, our mouse experiments revealed an impact of the Omicron variant, despite producing the least severe symptoms in genetically susceptible mice, suggesting that despite the continued evolution of SARS-CoV-2, it has retained its ability to perturb the intestinal mucosa. These results will hopefully renew efforts to study the mechanisms through which Omicron and future SARS-CoV-2 variants alter gastrointestinal physiology, while also considering the potentially broad consequences of SARS-CoV-2-induced microbiota instability for host health and disease. Viruses targeting mammalian cells can indirectly alter the gut microbiota, potentially compounding their phenotypic effects. Multiple studies have observed a disrupted gut microbiota in severe cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that require hospitalization. Yet, despite demographic shifts in disease severity resulting in a large and continuing burden of non-hospitalized infections, we still know very little about the impact of mild SARS-CoV-2 infection on the gut microbiota in the outpatient setting. To address this knowledge gap, we longitudinally sampled 14 SARS-CoV-2-positive subjects who remained outpatient and 4 household controls. SARS-CoV-2 cases exhibited a significantly less stable gut microbiota relative to controls. These results were confirmed and extended in the K18-humanized angiotensin-converting enzyme 2 mouse model, which is susceptible to SARS-CoV-2 infection. All of the tested SARS-CoV-2 variants significantly disrupted the mouse gut microbiota, including USA-WA1/2020 (the original variant detected in the USA), Delta, and Omicron. Surprisingly, despite the fact that the Omicron variant caused the least severe symptoms in mice, it destabilized the gut microbiota and led to a significant depletion in Akkermansia muciniphila. Furthermore, exposure of wild-type C57BL/6J mice to SARS-CoV-2 disrupted the gut microbiota in the absence of severe lung pathology.IMPORTANCETaken together, our results demonstrate that even mild cases of SARS-CoV-2 can disrupt gut microbial ecology. Our findings in non-hospitalized individuals are consistent with studies of hospitalized patients, in that reproducible shifts in gut microbial taxonomic abundance in response to SARS-CoV-2 have been difficult to identify. Instead, we report a long-lasting instability in the gut microbiota. Surprisingly, our mouse experiments revealed an impact of the Omicron variant, despite producing the least severe symptoms in genetically susceptible mice, suggesting that despite the continued evolution of SARS-CoV-2, it has retained its ability to perturb the intestinal mucosa. These results will hopefully renew efforts to study the mechanisms through which Omicron and future SARS-CoV-2 variants alter gastrointestinal physiology, while also considering the potentially broad consequences of SARS-CoV-2-induced microbiota instability for host health and disease.
引用
收藏
页数:18
相关论文
共 48 条
[1]   Effects of Previous Infection and Vaccination on Symptomatic Omicron Infections [J].
Altarawneh, Heba N. ;
Chemaitelly, Hiam ;
Ayoub, Houssein H. ;
Tang, Patrick ;
Hasan, Mohammad R. ;
Yassine, Hadi M. ;
Al-Khatib, Hebah A. ;
Smatti, Maria K. ;
Coyle, Peter ;
Al-Kanaani, Zaina ;
Al-Kuwari, Einas ;
Jeremijenko, Andrew ;
Kaleeckal, Anvar H. ;
Latif, Ali N. ;
Shaik, Riyazuddin M. ;
Abdul-Rahim, Hanan F. ;
Nasrallah, Gheyath K. ;
Al-Kuwari, Mohamed G. ;
Butt, Adeel A. ;
Al-Romaihi, Hamad E. ;
Al-Thani, Mohamed H. ;
Al-Khal, Abdullatif ;
Bertollini, Roberto ;
Abu-Raddad, Laith J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2022, 387 (01) :21-34
[2]   Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis [J].
Ansaldo, Eduard ;
Slayden, Leianna C. ;
Ching, Krystal L. ;
Koch, Meghan A. ;
Wolf, Natalie K. ;
Plichta, Damian R. ;
Brown, Eric M. ;
Graham, Daniel B. ;
Xavier, Ramnik J. ;
Moon, James J. ;
Barton, Gregory M. .
SCIENCE, 2019, 364 (6446) :1179-+
[3]   Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response [J].
Antunes, Krist Helen ;
Fachi, Jose Luis ;
de Paula, Rosemeire ;
da Silva, Emanuelle Fraga ;
Pral, Lais Passariello ;
dos Santos, Adara Aurea ;
Malaquias Dias, Greicy Brisa ;
Vargas, Jose Eduardo ;
Puga, Renato ;
Mayer, Fabiana Quoos ;
Maito, Fabio ;
Zarate-Blades, Carlos R. ;
Ajami, Nadim J. ;
St Ana, Marcella Ramos ;
Candreva, Thamiris ;
Rodrigues, Hosana Gomes ;
Schmiele, Marcio ;
Pedrosa Silva Clerici, Maria Teresa ;
Proenca-Modena, Jose Luiz ;
Vieira, Angelica Thomas ;
Mackay, Charles R. ;
Mansur, Daniel ;
Caballero, Mauricio T. ;
Marzec, Jacqui ;
Li, Jianying ;
Wang, Xuting ;
Bell, Douglas ;
Polack, Fernando P. ;
Kleeberger, Steven R. ;
Stein, Renato T. ;
Ramirez Vinolo, Marco Aurelio ;
Duarte de Souza, Ana Paula .
NATURE COMMUNICATIONS, 2019, 10 (1)
[4]   Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3 [J].
Beghini, Francesco ;
McIver, Lauren J. ;
Blanco-Miguez, Aitor ;
Dubois, Leonard ;
Asnicar, Francesco ;
Maharjan, Sagun ;
Mailyan, Ana ;
Manghi, Paolo ;
Scholz, Matthias ;
Thomas, Andrew Maltez ;
Valles-Colomer, Mireia ;
Weingart, George ;
Zhang, Yancong ;
Zolfo, Moreno ;
Huttenhower, Curtis ;
Franzosa, Eric A. ;
Segata, Nicola .
ELIFE, 2021, 10
[5]   Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia [J].
Bernard-Raichon, Lucie ;
Venzon, Mericien ;
Klein, Jon ;
Axelrad, Jordan E. ;
Zhang, Chenzhen ;
Sullivan, Alexis P. ;
Hussey, Grant A. ;
Casanovas-Massana, Arnau ;
Noval, Maria G. ;
Valero-Jimenez, Ana M. ;
Gago, Juan ;
Putzel, Gregory ;
Pironti, Alejandro ;
Wilder, Evan ;
Thorpe, Lorna E. ;
Littman, Dan R. ;
Dittmann, Meike ;
Stapleford, Kenneth A. ;
Shopsin, Bo ;
Torres, Victor J. ;
Ko, Albert, I ;
Iwasaki, Akiko ;
Cadwell, Ken ;
Schluter, Jonas .
NATURE COMMUNICATIONS, 2022, 13 (01)
[6]  
Bisanz J., 2017, MICROBER V 0 3 2 HAN
[7]   Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].
Bolyen, Evan ;
Rideout, Jai Ram ;
Dillon, Matthew R. ;
Bokulich, NicholasA. ;
Abnet, Christian C. ;
Al-Ghalith, Gabriel A. ;
Alexander, Harriet ;
Alm, Eric J. ;
Arumugam, Manimozhiyan ;
Asnicar, Francesco ;
Bai, Yang ;
Bisanz, Jordan E. ;
Bittinger, Kyle ;
Brejnrod, Asker ;
Brislawn, Colin J. ;
Brown, C. Titus ;
Callahan, Benjamin J. ;
Caraballo-Rodriguez, Andres Mauricio ;
Chase, John ;
Cope, Emily K. ;
Da Silva, Ricardo ;
Diener, Christian ;
Dorrestein, Pieter C. ;
Douglas, Gavin M. ;
Durall, Daniel M. ;
Duvallet, Claire ;
Edwardson, Christian F. ;
Ernst, Madeleine ;
Estaki, Mehrbod ;
Fouquier, Jennifer ;
Gauglitz, Julia M. ;
Gibbons, Sean M. ;
Gibson, Deanna L. ;
Gonzalez, Antonio ;
Gorlick, Kestrel ;
Guo, Jiarong ;
Hillmann, Benjamin ;
Holmes, Susan ;
Holste, Hannes ;
Huttenhower, Curtis ;
Huttley, Gavin A. ;
Janssen, Stefan ;
Jarmusch, Alan K. ;
Jiang, Lingjing ;
Kaehler, Benjamin D. ;
Bin Kang, Kyo ;
Keefe, Christopher R. ;
Keim, Paul ;
Kelley, Scott T. ;
Knights, Dan .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :852-857
[8]  
Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/NMETH.3869, 10.1038/nmeth.3869]
[9]  
Cantu V J., 2021, SARS-CoV-2 Distribution in Residential Housing Suggests Contact Deposition and Correlates with Rothia sp
[10]   Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample [J].
Caporaso, J. Gregory ;
Lauber, Christian L. ;
Walters, William A. ;
Berg-Lyons, Donna ;
Lozupone, Catherine A. ;
Turnbaugh, Peter J. ;
Fierer, Noah ;
Knight, Rob .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 :4516-4522