Mean dimension of continuous cellular automata

被引:3
|
作者
Burguet, David [1 ]
Shi, Ruxi [1 ]
机构
[1] Sorbonne Univ, Lab Probabil Stat & Modelisat, F-75005 Paris, France
关键词
ENTROPY;
D O I
10.1007/s11856-023-2493-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the mean dimension of a cellular automaton (CA for short) with a compact non-discrete space of states. A formula for the mean dimension is established for (near) strongly permutative, permutative algebraic and unit one-dimensional automata. In higher dimensions, a CA permutative algebraic or having a spaceship has infinite mean dimension. However, building on Meyerovitch's example [Mey08], we give an example of an algebraic surjective cellular automaton with positive finite mean dimension.
引用
收藏
页码:311 / 346
页数:36
相关论文
共 50 条
  • [1] Mean dimension of continuous cellular automata
    David Burguet
    Ruxi Shi
    Israel Journal of Mathematics, 2024, 259 : 311 - 346
  • [2] CELLULAR AUTOMATA AND MULTIFRACTALS - DIMENSION SPECTRA OF LINEAR CELLULAR AUTOMATA
    TAKAHASHI, S
    PHYSICA D, 1990, 45 (1-3): : 36 - 48
  • [3] Mean equicontinuity and mean sensitivity on cellular automata
    Santos Banos, Luguis De Los
    Garcia-Ramos, Felipe
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (12) : 3704 - 3721
  • [4] ORDERED CELLULAR AUTOMATA IN ONE DIMENSION
    BINDER, PM
    KO, DYK
    OWCZAREK, AL
    TWINING, CJ
    JOURNAL DE PHYSIQUE I, 1993, 3 (01): : 21 - 28
  • [5] Hamiltonian quantum cellular automata in one dimension
    Nagaj, Daniel
    Wocjan, Pawel
    PHYSICAL REVIEW A, 2008, 78 (03):
  • [6] Topological Dynamics of Cellular Automata: Dimension Matters
    Sablik, Mathieu
    Theyssier, Guillaume
    THEORY OF COMPUTING SYSTEMS, 2011, 48 (03) : 693 - 714
  • [7] A new dimension sensitive property for cellular automata
    Bernardi, V
    Durand, B
    Formenti, E
    Kari, J
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2004, PROCEEDINGS, 2004, 3153 : 416 - 426
  • [8] Signals for cellular automata in dimension 2 or higher
    Dubacq, JC
    Terrier, V
    LATIN 2002: THEORETICAL INFORMATICS, 2002, 2286 : 451 - 464
  • [9] Topological Dynamics of Cellular Automata: Dimension Matters
    Mathieu Sablik
    Guillaume Theyssier
    Theory of Computing Systems, 2011, 48 : 693 - 714
  • [10] A new dimension sensitive property for cellular automata
    Bernardi, V
    Durand, B
    Formenti, E
    Kari, J
    THEORETICAL COMPUTER SCIENCE, 2005, 345 (2-3) : 235 - 247