An efficient and accurate numerical method for the fractional optimal control problems with fractional Laplacian and state constraint

被引:0
作者
Zhang, Jiaqi [1 ]
Yang, Yin [2 ,3 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc Minist Ed, Xiangtan, Hunan, Peoples R China
[2] Xiangtan Univ, Natl Ctr Appl Math Hunan, Sch Math & Computat Sci, Hunan Int Sci & Technol Innovat Cooperat Base Comp, Xiangtan, Hunan, Peoples R China
[3] Xiangtan Univ, Natl Ctr Appl Math Hunan, Sch Math & Computat Sci, Hunan Int Sci & Technol Innovat Cooperat Base Comp, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Caffarelli-Silvestre extension; enriched spectral Galerkin method; fractional Laplacian; Laguerre polynomials; optimal control problems; FINITE-ELEMENT APPROXIMATION; ERROR ANALYSIS; CONVERGENCE; EQUATIONS; FEM;
D O I
10.1002/num.23056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the numerical approximation of an optimal control problem with fractional Laplacian and state constraint in integral form based on the Caffarelli-Silvestre expansion. The first order optimality conditions of the extended optimal control problem is obtained. An enriched spectral Galerkin discrete scheme for the extended problem based on weighted Laguerre polynomials is proposed. A priori error estimate for the enriched spectral discrete scheme is proved. Numerical experiments demonstrate the effectiveness of our method and validate the theoretical results.
引用
收藏
页码:4403 / 4420
页数:18
相关论文
共 34 条
[1]   Optimal Control of Fractional Elliptic PDEs with State Constraints and Characterization of the Dual of Fractional-Order Sobolev Spaces [J].
Antil, Harbir ;
Verma, Deepanshu ;
Warma, Mahamadi .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 186 (01) :1-23
[2]   A SPACE-TIME FRACTIONAL OPTIMAL CONTROL PROBLEM: ANALYSIS AND DISCRETIZATION [J].
Antil, Harbir ;
Otarola, Enrique ;
Salgado, Abner J. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (03) :1295-1328
[3]   A FEM FOR AN OPTIMAL CONTROL PROBLEM OF FRACTIONAL POWERS OF ELLIPTIC OPERATORS [J].
Antil, Harbir ;
Otarola, Enrique .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (06) :3432-3456
[4]  
Bersetche F., 2023, ARXIV
[5]   A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations [J].
Bhrawy, A. H. ;
Doha, E. H. ;
Baleanu, D. ;
Ezz-Eldien, S. S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :142-156
[6]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[7]   Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints [J].
Casas, E .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :345-374
[8]   Pontryagin's principle for state-constrained boundary control problems of semilinear parabolic equations [J].
Casas, E .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (04) :1297-1327
[9]   An Efficient and Accurate Numerical Method for the Spectral Fractional Laplacian Equation [J].
Chen, Sheng ;
Shen, Jie .
JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
[10]   A PRIORI ERROR ESTIMATES FOR THE OPTIMAL CONTROL OF THE INTEGRAL FRACTIONAL LAPLACIAN [J].
D'elia, Marta ;
Glusa, Christian ;
Otarola, Enrique .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (04) :2775-2798