Identifying Host Galaxies of Extragalactic Radio Emission Structures using Machine Learning

被引:1
|
作者
Lou, Kangzhi [1 ,2 ]
Lake, Sean E. E. [1 ]
Tsai, Chao-Wei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Beijing Normal Univ, Inst Frontiers Astron & Astrophys, Beijing 102206, Peoples R China
基金
美国国家航空航天局; 中国国家自然科学基金; 美国国家科学基金会;
关键词
techniques: image processing; surveys; methods: data analysis; ACTIVE GALACTIC NUCLEI; DATA RELEASE; MIDINFRARED SELECTION; CONFIG SAMPLE; DEEP FIELDS; SKY; IDENTIFICATIONS; ATLAS; CLASSIFICATION; POPULATIONS;
D O I
10.1088/1674-4527/acd16b
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper presents an automatic multi-band source cross-identification method based on deep learning to identify the hosts of extragalactic radio emission structures. The aim is to satisfy the increased demand for automatic radio source identification and analysis of large-scale survey data from next-generation radio facilities such as the Square Kilometre Array and the Next Generation Very Large Array. We demonstrate a 97% overall accuracy in distinguishing quasi-stellar objects, galaxies and stars using their optical morphologies plus their corresponding mid-infrared information by training and testing a convolutional neural network on Pan-STARRS imaging and WISE photometry. Compared with an expert-evaluated sample, we show that our approach has 95% accuracy at identifying the hosts of extended radio components. We also find that improving radio core localization, for instance by locating its geodesic center, could further increase the accuracy of locating the hosts of systems with a complex radio structure, such as C-shaped radio galaxies. The framework developed in this work can be used for analyzing data from future large-scale radio surveys.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Star formation rates for photometric samples of galaxies using machine learning methods
    Delli Veneri, M.
    Cavuoti, S.
    Brescia, M.
    Longo, G.
    Riccio, G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 486 (01) : 1377 - 1391
  • [22] Assessing the Performance of a Machine Learning Algorithm in Identifying Bubbles in Dust Emission
    Xu, Duo
    Offner, Stella S. R.
    ASTROPHYSICAL JOURNAL, 2017, 851 (02)
  • [23] Identifying damage mechanisms of composites by acoustic emission and supervised machine learning
    Almeida, Renato S. M.
    Magalhaes, Marcelo D.
    Karim, Md Nurul
    Tushtev, Kamen
    Rezwan, Kurosch
    MATERIALS & DESIGN, 2023, 227
  • [24] Discovery of peculiar radio morphologies with ASKAP using unsupervised machine learning
    Gupta, Nikhel
    Minh Huynh
    Norris, Ray P.
    Wang, X. Rosalind
    Hopkins, Andrew M.
    Andernach, Heinz
    Koribalski, Barbel S.
    Galvin, Tim J.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2022, 39
  • [25] Significant Suppression of Star Formation in Radio-quiet AGN Host Galaxies with Kiloparsec-scale Radio Structures
    Smith, Krista Lynne
    Koss, Michael
    Mushotzky, Richard
    Wong, O. Ivy
    Shimizu, T. Taro
    Ricci, Claudio
    Ricci, Federica
    ASTROPHYSICAL JOURNAL, 2020, 904 (02)
  • [26] Machine-learning Classifiers for Intermediate Redshift Emission-line Galaxies
    Zhang, Kai
    Schlegel, David J.
    Andrews, Brett H.
    Comparat, Johan
    Schafer, Christoph
    Vazquez Mata, Jose Antonio
    Kneib, Jean-Paul
    Yan, Renbin
    ASTROPHYSICAL JOURNAL, 2019, 883 (01)
  • [27] Morphological classification of galaxies through structural and star formation parameters using machine learning
    Aguilar-Arguello, G.
    Fuentes-Pineda, G.
    Hernandez-Toledo, H. M.
    Martinez-Vazquez, L. A.
    Vazquez-Mata, J. A.
    Brough, S.
    Demarco, R.
    Ghosh, A.
    Jimenez-Teja, Y.
    Martin, G.
    Pearson, W. J.
    Sifon, C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2025, 537 (02) : 876 - 896
  • [28] High-energy Emission Component, Population, and Contribution to the Extragalactic Gamma-Ray Background of Gamma-Ray-emitting Radio Galaxies
    Fukazawa, Yasushi
    Matake, Hiroto
    Kayanoki, Taishu
    Inoue, Yoshiyuki
    Finke, Justin
    ASTROPHYSICAL JOURNAL, 2022, 931 (02)
  • [29] IDENTIFYING LEVELS OF OCCUPANCY IN BUILDINGS USING AUTOMATED MACHINE LEARNING
    Isikdag, Umit
    FRESENIUS ENVIRONMENTAL BULLETIN, 2021, 30 (4A): : 4317 - 4325
  • [30] Identifying factors associated with periodontal disease using machine learning
    Alqahtani, Hussam M.
    Koroukian, Siran M.
    Stange, Kurt
    Schiltz, Nicholas K.
    Bissada, Nabil F.
    JOURNAL OF INTERNATIONAL SOCIETY OF PREVENTIVE AND COMMUNITY DENTISTRY, 2022, 12 (06) : 612 - 620