Identifying Host Galaxies of Extragalactic Radio Emission Structures using Machine Learning

被引:1
|
作者
Lou, Kangzhi [1 ,2 ]
Lake, Sean E. E. [1 ]
Tsai, Chao-Wei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Beijing Normal Univ, Inst Frontiers Astron & Astrophys, Beijing 102206, Peoples R China
基金
美国国家航空航天局; 中国国家自然科学基金; 美国国家科学基金会;
关键词
techniques: image processing; surveys; methods: data analysis; ACTIVE GALACTIC NUCLEI; DATA RELEASE; MIDINFRARED SELECTION; CONFIG SAMPLE; DEEP FIELDS; SKY; IDENTIFICATIONS; ATLAS; CLASSIFICATION; POPULATIONS;
D O I
10.1088/1674-4527/acd16b
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper presents an automatic multi-band source cross-identification method based on deep learning to identify the hosts of extragalactic radio emission structures. The aim is to satisfy the increased demand for automatic radio source identification and analysis of large-scale survey data from next-generation radio facilities such as the Square Kilometre Array and the Next Generation Very Large Array. We demonstrate a 97% overall accuracy in distinguishing quasi-stellar objects, galaxies and stars using their optical morphologies plus their corresponding mid-infrared information by training and testing a convolutional neural network on Pan-STARRS imaging and WISE photometry. Compared with an expert-evaluated sample, we show that our approach has 95% accuracy at identifying the hosts of extended radio components. We also find that improving radio core localization, for instance by locating its geodesic center, could further increase the accuracy of locating the hosts of systems with a complex radio structure, such as C-shaped radio galaxies. The framework developed in this work can be used for analyzing data from future large-scale radio surveys.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Identifying AGN Host Galaxies by Machine Learning with HSC plus WISE
    Chang, Yu-Yen
    Hsieh, Bau-Ching
    Wang, Wei-Hao
    Lin, Yen-Ting
    Lim, Chen-Fatt
    Toba, Yoshiki
    Zhong, Yuxing
    Chang, Siou-Yu
    ASTROPHYSICAL JOURNAL, 2021, 920 (02)
  • [2] Machine learning-based photometric classification of galaxies, quasars, emission-line galaxies, and stars
    Zeraatgari, Fatemeh Zahra
    Hafezianzadeh, Fatemeh
    Zhang, Yanxia
    Mei, Liquan
    Ayubinia, Ashraf
    Mosallanezhad, Amin
    Zhang, Jingyi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (03) : 4677 - 4689
  • [3] Selection of powerful radio galaxies with machine learning
    Carvajal, R.
    Matute, I.
    Afonso, J.
    Norris, R. P.
    Luken, K. J.
    Sanchez-Saez, P.
    Cunha, P. A. C.
    Humphrey, A.
    Messias, H.
    Amarantidis, S.
    Barbosa, D.
    Cruz, H. A.
    Miranda, H.
    Paulino-Afonso, A.
    Pappalardo, C.
    ASTRONOMY & ASTROPHYSICS, 2023, 679
  • [4] A Machine Learning Made Catalog of FR-II Radio Galaxies from the FIRST Survey
    Lao, Bao-Qiang
    Yang, Xiao-Long
    Jaiswal, Sumit
    Mohan, Prashanth
    Sun, Xiao-Hui
    Qin, Sheng-Li
    Zhao, Ru-Shuang
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2024, 24 (03)
  • [5] Radio galaxies classification system using machine learning techniques in the IoT Era
    Dimililer, Kamil
    Teimourian, Hanifa
    Al-Turjman, Fadi
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2024, 36 (03) : 357 - 369
  • [6] Deep learning for morphological identification of extended radio galaxies using weak labels
    Gupta, Nikhel
    Hayder, Zeeshan
    Norris, Ray P.
    Huynh, Minh
    Petersson, Lars
    Wang, X. Rosalind
    Andernach, Heinz
    Koribalski, Barbel S.
    Yew, Miranda
    Crawford, Evan J.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2023, 40
  • [7] Photometric classification of emission line galaxies with machine-learning methods
    Cavuoti, Stefano
    Brescia, Massimo
    D'Abrusco, Raffaele
    Longo, Giuseppe
    Paolillo, Maurizio
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 437 (01) : 968 - 975
  • [8] A multi-band AGN-SFG classifier for extragalactic radio surveys using machine learning
    Karsten, J.
    Wang, L.
    Margalef-Bentabol, B.
    Best, P. N.
    Kondapally, R.
    La Marca, A.
    Morganti, R.
    Rottgering, H. J. A.
    Vaccari, M.
    Sabater, J.
    ASTRONOMY & ASTROPHYSICS, 2023, 675
  • [9] Radio Galaxy Zoo: machine learning for radio source host galaxy cross-identification
    Alger, M. J.
    Banfield, J. K.
    Ong, C. S.
    Rudnick, L.
    Wong, O. I.
    Wolf, C.
    Andernach, H.
    Norris, R. P.
    Shabala, S. S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (04) : 5556 - 5572
  • [10] Magnetic fields in elliptical galaxies: using the Laing-Garrington effect in radio galaxies and polarized emission from background radio sources
    Shah, Hilay
    Seta, Amit
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 508 (01) : 1371 - 1388