A geospatial platform for the tectonic interpretation of low-temperature thermochronology Big Data

被引:7
|
作者
Boone, Samuel C. [1 ,2 ]
Kohlmann, Fabian [3 ]
Noble, Wayne [3 ]
Theile, Moritz [3 ]
Beucher, Romain [4 ]
Kohn, Barry [1 ]
Glorie, Stijn [2 ]
Danisik, Martin [5 ]
Zhou, Renjie [6 ]
McMillan, Malcolm [1 ]
Nixon, Angus [2 ]
Gleadow, Andrew [1 ]
Qin, Xiaodong [7 ]
Mueller, Dietmar [7 ]
McInnes, Brent [5 ]
机构
[1] Univ Melbourne, Sch Geog Earth & Atmospher Sci, Melbourne, Vic 3010, Australia
[2] Univ Adelaide, Dept Earth Sci, Adelaide, SA 5005, Australia
[3] Lithodat Pty Ltd, Melbourne, Vic 3030, Australia
[4] Australian Natl Univ, Res Sch Earth Sci, Canberra, Australia
[5] Curtin Univ, John Laeter Ctr, Bentley, WA 6102, Australia
[6] Univ Queensland, Sch Earth & Environm Sci, Brisbane, Australia
[7] Univ Sydney, Sch Geosci, EarthByte Grp, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
FISSION-TRACK AGE; DENUDATION HISTORY; CONTINENTAL-MARGIN; THERMAL EVOLUTION; RADIATION-DAMAGE; HELIUM DIFFUSION; EAST-AFRICA; NEW-ZEALAND; RED-SEA; APATITE;
D O I
10.1038/s41598-023-35776-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Low-temperature thermochronology is a powerful tool for constraining the thermal evolution of rocks and minerals in relation to a breadth of tectonic, geodynamic, landscape evolution, and natural resource formation processes through deep time. However, complexities inherent to these analytical techniques can make interpreting the significance of results challenging, requiring them to be placed in their geological context in 4-dimensions (3D + time). We present a novel tool for the geospatial archival, analysis and dissemination of fission-track and (U-Th)/He data, built as an extension to the open-access AusGeochem platform () and freely accessible to scientists from around the world. To demonstrate the power of the platform, three regional datasets from Kenya, Australia and the Red Sea are placed in their 4D geological, geochemical, and geographic contexts, revealing insights into the tectono-thermal evolutions of these areas. Beyond facilitating data interpretation, the archival of fission track and (U-Th)/He (meta-)data in relational schemas unlocks future potential for greater integration of thermochronology and numerical geoscience techniques. The power of formatting data to interface with external tools is demonstrated through the integration of GPlates Web Service with AusGeochem, enabling thermochronology data to be readily viewed in their paleogeographic context through deep time from within the platform.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Turning the Orogenic Switch: Slab-Reversal in the Eastern Alps Recorded by Low-Temperature Thermochronology
    Eizenhoefer, Paul R.
    Glotzbach, Christoph
    Buettner, Lukas
    Kley, Jonas
    Ehlers, Todd A.
    GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (06)
  • [32] Late Cretaceous to Oligocene burial and collision in western Papua New Guinea: Indications from low-temperature thermochronology and thermal modelling
    Mahoney, Luke
    McLaren, Sandra
    Hill, Kevin
    Kohn, Barry
    Gallagher, Kerry
    Norvick, Martin
    TECTONOPHYSICS, 2019, 752 : 81 - 112
  • [33] Constraining the denudation process in the eastern Sichuan Basin, China using low-temperature thermochronology and vitrinite reflectance data
    Zhu, Chuanqing
    Qiu, Nansheng
    Liu, Yifeng
    Xiao, Yao
    Hu, Shengbiao
    GEOLOGICAL JOURNAL, 2019, 54 (01) : 426 - 437
  • [34] Early Cretaceous to Cenozoic Growth of the Patagonian Andes as Revealed by Low-Temperature Thermochronology
    Ronda, Gonzalo
    Ghiglione, Matias C.
    Martinod, Joseph
    Barberon, Vanesa
    Ramos, Miguel E.
    Coutand, Isabelle
    Grujic, Djordje
    Kislitsyn, Roman
    TECTONICS, 2022, 41 (10)
  • [35] Beo v1.0: numerical model of heat flow and low-temperature thermochronology in hydrothermal systems
    Luijendijk, Elco
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2019, 12 (09) : 4061 - 4073
  • [36] Exhumation history of the Tatry Mountains, Western Carpathians, constrained by low-temperature thermochronology
    Smigielski, M.
    Sinclair, H. D.
    Stuart, F. M.
    Persano, C.
    Krzywiec, P.
    TECTONICS, 2016, 35 (01) : 187 - 207
  • [37] Constraints on Cenozoic tectonics in the southwestern Longmen Shan from low-temperature thermochronology
    Cook, K. L.
    Royden, L. H.
    Burchfiel, B. C.
    Lee, Y. -H.
    Tan, X.
    LITHOSPHERE, 2013, 5 (04) : 393 - 406
  • [38] Neogene evolution of the eastern margin of Gulf of California, Sonora, Mexico: Insights from low-temperature thermochronology
    Lugo-Zazueta, R.
    Kohn, B.
    Gleadow, A.
    Calmus, T.
    Ramos-Velazquez, E.
    Fletcher, J. M.
    Perez-Segura, E.
    JOURNAL OF SOUTH AMERICAN EARTH SCIENCES, 2020, 103
  • [39] Insights Into Episodic Exhumation of the Western Tibetan Plateau Since the Late Cretaceous From Low-Temperature Thermochronology
    Xu, S. Y.
    Dai, J. G.
    Li, H. A.
    Liu, B. R.
    Han, X.
    Wang, C. S.
    TECTONICS, 2022, 41 (12)
  • [40] Tracking low-temperature tectonism of the St. Lawrence Platform and Humber Zone, southern Quebec Appalachians, through apatite and zircon (U-Th)/He thermochronology
    Emberley, J. M.
    Schneider, D. A.
    CANADIAN JOURNAL OF EARTH SCIENCES, 2017, 54 (08) : 827 - 849