A geospatial platform for the tectonic interpretation of low-temperature thermochronology Big Data

被引:7
|
作者
Boone, Samuel C. [1 ,2 ]
Kohlmann, Fabian [3 ]
Noble, Wayne [3 ]
Theile, Moritz [3 ]
Beucher, Romain [4 ]
Kohn, Barry [1 ]
Glorie, Stijn [2 ]
Danisik, Martin [5 ]
Zhou, Renjie [6 ]
McMillan, Malcolm [1 ]
Nixon, Angus [2 ]
Gleadow, Andrew [1 ]
Qin, Xiaodong [7 ]
Mueller, Dietmar [7 ]
McInnes, Brent [5 ]
机构
[1] Univ Melbourne, Sch Geog Earth & Atmospher Sci, Melbourne, Vic 3010, Australia
[2] Univ Adelaide, Dept Earth Sci, Adelaide, SA 5005, Australia
[3] Lithodat Pty Ltd, Melbourne, Vic 3030, Australia
[4] Australian Natl Univ, Res Sch Earth Sci, Canberra, Australia
[5] Curtin Univ, John Laeter Ctr, Bentley, WA 6102, Australia
[6] Univ Queensland, Sch Earth & Environm Sci, Brisbane, Australia
[7] Univ Sydney, Sch Geosci, EarthByte Grp, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
FISSION-TRACK AGE; DENUDATION HISTORY; CONTINENTAL-MARGIN; THERMAL EVOLUTION; RADIATION-DAMAGE; HELIUM DIFFUSION; EAST-AFRICA; NEW-ZEALAND; RED-SEA; APATITE;
D O I
10.1038/s41598-023-35776-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Low-temperature thermochronology is a powerful tool for constraining the thermal evolution of rocks and minerals in relation to a breadth of tectonic, geodynamic, landscape evolution, and natural resource formation processes through deep time. However, complexities inherent to these analytical techniques can make interpreting the significance of results challenging, requiring them to be placed in their geological context in 4-dimensions (3D + time). We present a novel tool for the geospatial archival, analysis and dissemination of fission-track and (U-Th)/He data, built as an extension to the open-access AusGeochem platform () and freely accessible to scientists from around the world. To demonstrate the power of the platform, three regional datasets from Kenya, Australia and the Red Sea are placed in their 4D geological, geochemical, and geographic contexts, revealing insights into the tectono-thermal evolutions of these areas. Beyond facilitating data interpretation, the archival of fission track and (U-Th)/He (meta-)data in relational schemas unlocks future potential for greater integration of thermochronology and numerical geoscience techniques. The power of formatting data to interface with external tools is demonstrated through the integration of GPlates Web Service with AusGeochem, enabling thermochronology data to be readily viewed in their paleogeographic context through deep time from within the platform.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Low-temperature Thermochronology and Its Application to Tectonics in the Shallow Crust
    Sueoka, Shigeru
    Tagami, Takahiro
    JOURNAL OF GEOGRAPHY-CHIGAKU ZASSHI, 2019, 128 (05) : 707 - 730
  • [22] Reconstructing the Tectonic History of the Arabian-Nubian Shield in Sinai: Low-Temperature Thermochronology Implications on Wadi Agar Area
    Mansour, Sherif
    Hasebe, Noriko
    Abdelrahman, Kamal
    Fnais, Mohammed S.
    Tamura, Akihiro
    MINERALS, 2023, 13 (04)
  • [23] The Gulf of Suez rifting: implications from low-temperature thermochronology
    Mansour, Sherif
    Hasebe, Noriko
    Abdelrahman, Kamal
    Fnais, Mohammed S.
    Tamura, Akihiro
    INTERNATIONAL GEOLOGY REVIEW, 2025, 67 (05) : 694 - 710
  • [24] Interpretation of Low-Temperature Thermochronometer Ages From Tilted Normal Fault Blocks
    Johnstone, S. A.
    Colgan, J. P.
    TECTONICS, 2018, 37 (10) : 3647 - 3667
  • [25] Mesozoic Thermo-Tectonic Evolution of the Western Altai Orogenic Belt (NW China): Insights from Low-Temperature Thermochronology
    Wu, Mingxuan
    Yin, Jiyuan
    He, Zhiyuan
    Xiao, Wenjiao
    Wang, Yannan
    Chen, Wen
    Wang, Yamei
    Sun, Jingbo
    Li, Dapeng
    Meng, Yun
    LITHOSPHERE, 2023, 2023 (Special Issue 14)
  • [26] Study on Late Cretaceous-Cenozoic exhumation of the Yanji area, NE China: insights from low-temperature thermochronology
    Li, Xiaoming
    ACTA GEOCHIMICA, 2019, 38 (06) : 815 - 833
  • [27] Low-temperature thermochronology of active arc-arc collision zone, South Fossa Magna region, central Japan
    Sueoka, Shigeru
    Kobayashi, Yumi
    Fukuda, Shoma
    Kohn, Barry P.
    Yokoyama, Tatsunori
    Sano, Naomi
    Hasebe, Noriko
    Tamura, Akihiro
    Morishita, Tomoaki
    Tagami, Takahiro
    TECTONOPHYSICS, 2022, 828
  • [28] The Tectono-Thermal Evolution of Western Norway - New Insights From Low-Temperature Thermochronology
    Hestnes, Ase
    Gasser, Deta
    Ksienzyk, Anna K.
    Dunkl, Istvan
    Pedersen, Leif-Erik Rydland
    Scheiber, Thomas
    Sirevaag, Hallgeir
    Bauer, Friederike U.
    Jacobs, Joachim
    TECTONICS, 2025, 44 (03)
  • [29] Decay of an old orogen: Inferences about Appalachian landscape evolution from low-temperature thermochronology
    McKeon, Ryan E.
    Zeitler, Peter K.
    Pazzaglia, Frank J.
    Idleman, Bruce D.
    Enkelmann, Eva
    GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2014, 126 (1-2) : 31 - 46
  • [30] Synorogenic morphotectonic evolution of the Gangdese batholith, South Tibet: Insights from low-temperature thermochronology
    Li, Guangwei
    Kohn, Barry
    Sandiford, Mike
    Xu, Zhiqin
    Tian, Yuntao
    Seiler, Christian
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2016, 17 (01) : 101 - 112