Unveiling the underlying mechanism of unusual thermal conductivity behavior in multicomponent high-entropy (La0.2Gd0.2Y0.2Yb0.2Er0.2)2 (Zr1-xCex)2O7 ceramics

被引:12
|
作者
Zhang, Yonghe [1 ,2 ]
Xie, Min [1 ,2 ]
Wang, Zhigang [1 ,2 ]
Song, Xiwen [1 ,2 ]
Mu, Rende [3 ]
Gao, Jianquan [1 ,2 ]
Bao, Jinxiao [1 ,2 ]
Zhou, Fen [1 ,2 ]
Pan, Wei [4 ]
机构
[1] Inner Mongolia Univ Sci & Technol, Sch Mat & Met, Inner Mongolia Key Lab Adv Ceram & Device, Baotou 014010, Peoples R China
[2] Minist Educ, Key Lab Green Extract & Efficient Utilizat Light R, Baotou 014010, Peoples R China
[3] AECC Beijing Inst Aeronaut Mat, Beijing 100095, Peoples R China
[4] Tsinghua Univ, Dept Mat Sci & Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
High -entropy ceramics; Electronic thermal conductivity; Lattice thermal conductivity; Photon thermal conductivity; Thermal barrier coatings; RARE-EARTH-ZIRCONATE; THERMOPHYSICAL PROPERTIES; BARRIER COATINGS; CRYSTALS; ALLOYS;
D O I
10.1016/j.jallcom.2023.170471
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Previously, the research on thermal conductivity of ceramic thermal barrier coatings mainly focused on phonon and photon thermal conductivity (thermal radiation effect). However, electrical conductivity is remarkable in some systems. Hence, the contribution of phonon, photon and electronic heat conduction to thermal conductivity of high-entropy systems was evaluated in this study. The (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xCex)2O7 (x = 0-0.5) high-entropy ceramics with single defective fluorite structure were successfully prepared via a solid reaction method. Below 600 degrees C, the thermal conductivities decrease with increasing temperature for x = 0.1-0.5 components, then reveal a drastic temperature de-pendent increase. Moreover, the composition dependent thermal conductivities are also unusual based on the conventional phonon thermal conduction mechanism. The increased electronic thermal conductivity, improved photon thermal conductivity (at high temperatures) and reduced phonon-grain boundary scat-tering should be responsible for the unusual thermal conductivity behavior. This can be verified by the significantly increased electrical conductivity, optical transmittance and grain size, as well as reduced emissivity for(La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xCex)2O7 high-entropy ceramics. The present study also broadens the way to investigate the thermal conductivity of ceramic thermal barrier coatings, and is helpful to design thermal barrier coatings with low thermal conductivity.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Marked reduction in the thermal conductivity of (La0.2Gd0.2Y0.2Yb0.2Er0.2)2Zr2O7 high-entropy ceramics by substituting Zr4+ with Ti4+
    Zhang, Yonghe
    Xie, Min
    Wang, Zhigang
    Mu, Rende
    Song, Xiwen
    Yu, Yongbo
    Bao, Jinxiao
    Zhou, Fen
    Pan, Wei
    CERAMICS INTERNATIONAL, 2022, 48 (07) : 9602 - 9609
  • [2] Mechanical, thermal and CMAS resistance properties of high-entropy (Gd0.2Y0.2Er0.2Tm0.2Yb0.2)2Zr2O7 ceramics
    Yan, Rongxue
    Liang, Wenping
    Miao, Qiang
    Zhao, Hui
    Liu, Ruixiang
    Li, Jingli
    Zang, Kai
    Dong, Meijing
    He, Xiping
    Gao, Xiguang
    Song, Yindong
    CERAMICS INTERNATIONAL, 2023, 49 (12) : 20729 - 20741
  • [3] An Investigation of a La2(Zr0.2Ti0.2Y0.2Yb0.2Nb0.2)2O7 High Entropy Oxide Coating
    Zhang, Dongbo
    Feng, Xiaolong
    Song, Ruiqing
    Wang, Ning
    Zhang, Yongsheng
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (20) : 11309 - 11320
  • [4] Synthesis and characterization of high-entropy (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2(Zr0.75Ce0.25)2O7 nanopowders
    Guo, Donghui
    Zhou, Feifei
    Xu, Baosheng
    Wang, Yiguang
    Wang, You
    CERAMICS INTERNATIONAL, 2022, 48 (21) : 32532 - 32535
  • [5] Understanding the CMAS corrosion behavior of high-entropy (La0.2Sm0.2Er0.2Y0.2Yb0.2)2Ce2O7
    Xu, Liang
    Gao, Hongfei
    He, Xin
    Niu, Min
    Dai, Zhiwei
    Ni, Haotian
    Su, Lei
    Wang, Hongjie
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2025, 108 (05)
  • [6] Preparation of (La0.2Nd0.2Sm0.2Gd0.2Er0.2)2Zr2O7 High-entropy Transparent Ceramics by Vacuum Sintering
    Zeng Jianjun
    Zhang Kuibao
    Chen Daimeng
    Guo Haiyan
    Deng Ting
    Liu Kui
    JOURNAL OF INORGANIC MATERIALS, 2021, 36 (04) : 418 - 424
  • [7] CMAS corrosion behavior of a novel high entropy (Nd0.2Gd0.2Y0.2Er0.2Yb0.2)2Zr2O7 thermal barrier coating materials
    Lin, Guangqiang
    Wang, Yanli
    Yang, Lingxu
    Sun, Rongfa
    Wu, Liankui
    Zhang, Xiaofeng
    Liu, Huijun
    Zeng, Chaoliu
    CORROSION SCIENCE, 2023, 224
  • [8] High-entropy(Y0.2Gd0.2Dy0.2Er0.2Yb0.2)2Hf2O7 ceramic: A promising thermal barrier coating material
    Longkang Cong
    Wei Li
    Jiancheng Wang
    Shengyue Gu
    Shouyang Zhang
    JournalofMaterialsScience&Technology, 2022, 101 (06) : 199 - 204
  • [9] Thermophysical performances of high-entropy (La0.2Nd0.2Yb0.2Y0.2Sm0.2)2Ce2O7 and (La0.2Nd0.2Yb0.2Y0.2Lu0.2)2Ce2O7 oxides
    Tang, An
    Li, Bin
    Sang, Weiwei
    Hongsong, Zhang
    Chen, Xiaoge
    Zhang, Haoming
    Ren, Bo
    CERAMICS INTERNATIONAL, 2022, 48 (04) : 5574 - 5580
  • [10] A new TBC material: (La0.2Gd0.2Y0.2Sm0.2Ce0.2)2Zr2O7 high-entropy oxide
    Zhang, Dongbo
    Wang, Ning
    Song, Ruiqing
    Zhou, Menglong
    Tang, Xinyue
    Zhang, Yongsheng
    CERAMICS INTERNATIONAL, 2024, 50 (01) : 2490 - 2500