iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria

被引:150
作者
Roux, Simon E. [1 ]
Camargo, Antonio Pedro [1 ]
Coutinho, Felipe H. [2 ]
Dabdoub, Shareef M. [3 ]
Dutilh, Bas E. [4 ,5 ]
Nayfach, Stephen [1 ]
Tritt, Andrew [6 ]
机构
[1] Lawrence Berkeley Natl Lab, DOE Joint Genome Inst, Berkeley, CA 94720 USA
[2] Inst Ciencias Mar ICM CSIC, Barcelona, Spain
[3] Univ Iowa, Div Biostat & Computat Biol, Coll Dent, Iowa City, IA USA
[4] Friedrich Schiller Univ, Inst Biodivers, Fac Biol Sci, Cluster Excellence Balance Microverse, Jena, Germany
[5] Univ Utrecht, Theoret Biol & Bioinformat, Sci Life, Utrecht, Netherlands
[6] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA USA
基金
欧洲研究理事会;
关键词
CRASSPHAGE; TRACKING; PHAGE; TOOLS;
D O I
10.1371/journal.pbio.3002083
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The extraordinary diversity of viruses infecting bacteria and archaea is now primarily studied through metagenomics. While metagenomes enable high-throughput exploration of the viral sequence space, metagenome-derived sequences lack key information compared to isolated viruses, in particular host association. Different computational approaches are available to predict the host(s) of uncultivated viruses based on their genome sequences, but thus far individual approaches are limited either in precision or in recall, i.e., for a number of viruses they yield erroneous predictions or no prediction at all. Here, we describe iPHoP, a two-step framework that integrates multiple methods to reliably predict host taxonomy at the genus rank for a broad range of viruses infecting bacteria and archaea, while retaining a low false discovery rate. Based on a large dataset of metagenome-derived virus genomes from the IMG/VR database, we illustrate how iPHoP can provide extensive host prediction and guide further characterization of uncultivated viruses.
引用
收藏
页数:26
相关论文
共 73 条
[51]   Interaction dynamics and virus-host range for estuarine actinophages captured by epicPCR [J].
Sakowski, Eric G. ;
Arora-Williams, Keith ;
Tian, Funing ;
Zayed, Ahmed A. ;
Zablocki, Olivier ;
Sullivan, Matthew B. ;
Preheim, Sarah P. .
NATURE MICROBIOLOGY, 2021, 6 (05) :630-+
[52]   CHERRY: a Computational metHod for accuratE pRediction of virus-pRokarYotic interactions using a graph encoder-decoder model [J].
Shang, Jiayu ;
Sun, Yanni .
BRIEFINGS IN BIOINFORMATICS, 2022, 23 (05)
[53]   ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis [J].
Shkoporov, Andrey N. ;
Khokhlova, Ekaterina, V ;
Fitzgerald, C. Brian ;
Stockdale, Stephen R. ;
Draper, Lorraine A. ;
Ross, R. Paul ;
Hill, Colin .
NATURE COMMUNICATIONS, 2018, 9
[54]   Mapping CRISPR spaceromes reveals vast host-specific viromes of prokaryotes [J].
Shmakov, Sergey A. ;
Wolf, Yuri I. ;
Savitskaya, Ekaterina ;
Severinov, Konstantin V. ;
Koonin, Eugene V. .
COMMUNICATIONS BIOLOGY, 2020, 3 (01)
[55]   Crass: identification and reconstruction of CRISPR from unassembled metagenomic data [J].
Skennerton, Connor T. ;
Imelfort, Michael ;
Tyson, Gene W. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (10) :e105
[56]   Integrating Viral Metagenomics into an Ecological Framework [J].
Sommers, Pacifica ;
Chatterjee, Anushila ;
Varsani, Arvind ;
Trubl, Gareth .
ANNUAL REVIEW OF VIROLOGY, VOL 8, 2021, 8 :133-158
[57]   Metagenomic Evaluation of the Highly Abundant Human Gut Bacteriophage CrAssphage for Source Tracking of Human Fecal Pollution [J].
Stachlert, Elyse ;
Bibby, Kyle .
ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2014, 1 (10) :405-409
[58]   Probing Individual Environmental Bacteria for Viruses by Using Microfluidic Digital PCR [J].
Tadmor, Arbel D. ;
Ottesen, Elizabeth A. ;
Leadbetter, Jared R. ;
Phillips, Rob .
SCIENCE, 2011, 333 (6038) :58-62
[59]   HoPhage: an ab initio tool for identifying hosts of phage fragments from metaviromes [J].
Tan, Jie ;
Fang, Zhencheng ;
Wu, Shufang ;
Guo, Qian ;
Jiang, Xiaoqing ;
Zhu, Huaiqiu .
BIOINFORMATICS, 2022, 38 (02) :543-545
[60]   Metagenomic tools in microbial ecology research [J].
Tas, Neslihan ;
de Jong, Anniek E. E. ;
Li, Yaoming ;
Trubl, Gareth ;
Xue, Yaxin ;
Dove, Nicholas C. .
CURRENT OPINION IN BIOTECHNOLOGY, 2021, 67 :184-191