LOCAL APPROXIMATION OF HETEROGENEOUS POROUS MEDIUM EQUATION BY SOME NONLOCAL DISPERSAL PROBLEMS

被引:1
|
作者
Sun, Jian-wen [1 ]
Vo, Hoang-hung [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[2] Saigon Univ, Fac Math & Applicat, 273 An Duong Vuong St,Ward 3,Dist 5, Ho Chi Minh City, Vietnam
关键词
Porous medium equation; nonlocal dispersal; evolution equation; ASYMPTOTIC-BEHAVIOR; HEAT-EQUATION; EVOLUTION; MODEL;
D O I
10.1090/proc/16095
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical porous medium equation is widely used to model dif-ferent natural phenomena related to diffusion, filtration and heat propagation. In this short communication, we prove that the solution of porous medium equation can be locally approximated by the solution of a class of nonlocal dispersal equation. Our work is a counterpart to the important works (see Berestycki et al. [J. Funct. Anal. 271 (2016), pp. 2701-2751; J. Math. Biol. 72 (2016), pp. 1693-1745]; Dipierro et al. [J. Eur. Math. Soc. (JEMS) 19 (2017), pp. 957-966; J. Geom. Anal. 29 (2019), pp. 1428-1455]; Hansen and Netuka [Potential Anal. 2 (1993), pp. 67-71]; Ignat and Rossi [J. Funct. Anal. 251 (2007), pp. 399-437]; Shen and Xie [J. Differential Equations 259 (2015), pp. 7375-7405]; Sprekels and Valdinoci [SIAM J. Control Optim. 55 (2017), pp. 70-93]).
引用
收藏
页码:2935 / 2949
页数:15
相关论文
共 40 条