Quaternion Wavelet Transform and a Feedforward Neural Network-Aided Intelligent Distributed Optical Fiber Sensing System

被引:3
作者
Fan, Lei [1 ,2 ]
Wang, Yongjun [1 ,2 ]
Zhang, Hongxin [1 ]
Li, Chao [1 ,2 ]
Huang, Xingyuan [1 ,2 ]
Zhang, Qi [1 ,2 ]
Xin, Xiangjun [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun BUPT, Sch Elect Engn, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Key Lab Space Round Interconnect & Converg, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
distributed optical fiber sensor network; Brillouin optical time-domain analysis; quaternion wavelet transform; depth feedforward neural network; Brillouin frequency shift retrieval; TIME DOMAIN ANALYZER; BRILLOUIN; TEMPERATURE; SENSORS; STRAIN; BOTDA;
D O I
10.3390/s23073637
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, aiming at a large infrastructure structural health monitoring network, a quaternion wavelet transform (QWT) image denoising algorithm is proposed to process original data, and a depth feed forward neural network (FNN) is introduced to extract physical information from the denoised data. A Brillouin optical time domain analysis (BOTDA)-distributed sensor system is established, and a QWT denoising algorithm and a temperature extraction scheme using FNN are demonstrated. The results indicate that when the frequency interval is less than 4 MHz, the temperature error is kept within +/-0.11 degrees C, but is +/- 0.15 degrees C at 6 MHz. It takes less than 17 s to extract the temperature distribution from the FNN. Moreover, input vectors for the Brillouin gain spectrum with a frequency interval of no more than 6 MHZ are unified into 200 input elements by linear interpolation. We hope that with the progress in technology and algorithm optimization, the FNN information extraction and QWT denoising technology will play an important role in distributed optical fiber sensor networks for real-time monitoring of large-scale infrastructure.
引用
收藏
页数:14
相关论文
共 18 条
[1]   Comparison of the methods for discriminating temperature and strain in spontaneous Brillouin-based distributed sensors [J].
Alahbabi, M ;
Cho, YT ;
Newson, TP .
OPTICS LETTERS, 2004, 29 (01) :26-28
[2]   A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications [J].
Barrias, Antonio ;
Casas, Joan R. ;
Villalba, Sergi .
SENSORS, 2016, 16 (05)
[3]  
Cardoso R., 2022, SPRING TRACT CIV ENG, P85, DOI [10.1007/978-3-031-05875-2_4, DOI 10.1007/978-3-031-05875-2_4]
[4]   High-Accuracy 3D Contour Measurement by Using the Quaternion Wavelet Transform Image Denoising Technique [J].
Fan, Lei ;
Wang, Yongjun ;
Zhang, Hongxin ;
Li, Chao ;
Xin, Xiangjun .
ELECTRONICS, 2022, 11 (12)
[5]   Reduction in the Number of Averages Required in BOTDA Sensors Using Wavelet Denoising Techniques [J].
Farahani, Mohsen Amiri ;
Wylie, Michael T. V. ;
Castillo-Guerra, Eduardo ;
Colpitts, Bruce G. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2012, 30 (08) :1134-1142
[6]   Recent progress of using Brillouin distributed fiber optic sensors for geotechnical health monitoring [J].
Hong Cheng-Yu ;
Zhang Yi-Fan ;
Li Guo-Wei ;
Zhang Meng-Xi ;
Liu Zi-Xiong .
SENSORS AND ACTUATORS A-PHYSICAL, 2017, 258 :131-145
[7]  
Jigang Zhang, 2011, 2011 International Conference on Electrical and Control Engineering, P4153, DOI 10.1109/ICECENG.2011.6058217
[8]  
Li Na, 2010, 2010 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA 2010), P361, DOI 10.1109/ICMTMA.2010.668
[9]   Brillouin gain spectrum characterization in single-mode optical fibers [J].
Nikles, M ;
Thevenaz, L ;
Robert, PA .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1997, 15 (10) :1842-1851
[10]   Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration [J].
Soto, Marcelo A. ;
Ramirez, Jaime A. ;
Thevenaz, Luc .
NATURE COMMUNICATIONS, 2016, 7