Multi-View Attributed Graph Clustering

被引:128
|
作者
Lin, Zhiping [1 ]
Kang, Zhao [1 ]
Zhang, Lizong [1 ]
Tian, Ling [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
关键词
Clustering methods; Sparse matrices; Data models; Clustering algorithms; Task analysis; Symmetric matrices; Motion pictures; Multi-view clustering; multiplex network; heterogeneous graph; high-order information; multi-layer networks; ROBUST;
D O I
10.1109/TKDE.2021.3101227
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view graph clustering has been intensively investigated during the past years. However, existing methods are still limited in two main aspects. On the one hand, most of them can not deal with data that have both attributes and graphs. Nowadays, multi-view attributed graph data are ubiquitous and the need for effective clustering methods is growing. On the other hand, many state-of-the-art algorithms are either shallow or deep models. Shallow methods may seriously restrict their capacity for modeling complex data, while deep approaches often involve large number of parameters and are expensive to train in terms of running time and space needed. In this paper, we propose a novel multi-view attributed graph clustering (MAGC) framework, which exploits both node attributes and graphs. Our novelty lies in three aspects. First, instead of deep neural networks, we apply a graph filtering technique to achieve a smooth node representation. Second, the original graph could be noisy or incomplete and is not directly applicable, thus we learn a consensus graph from data by considering the heterogeneous views. Third, high-order relations are explored in a flexible way by designing a new regularizer. Extensive experiments demonstrate the superiority of our method in terms of effectiveness and efficiency.
引用
收藏
页码:1872 / 1880
页数:9
相关论文
共 50 条
  • [41] Multi-view clustering with graph regularized optimal transport
    Yao, Jie
    Lin, Renjie
    Lin, Zhenghong
    Wang, Shiping
    INFORMATION SCIENCES, 2022, 612 : 563 - 575
  • [42] Efficient Anchor Graph Factorization for Multi-View Clustering
    Li, Jing
    Wang, Qianqian
    Yang, Ming
    Gao, Quanxue
    Gao, Xinbo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 5834 - 5845
  • [43] Refining Graph Structure for Incomplete Multi-View Clustering
    Li, Xiang-Long
    Chen, Man-Sheng
    Wang, Chang-Dong
    Lai, Jian-Huang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 2300 - 2313
  • [44] Multi-view Clustering with Graph Embedding for Connectome Analysis
    Ma, Guixiang
    He, Lifang
    Lu, Chun-Ta
    Shao, Weixiang
    Yu, Philip S.
    Leow, Alex D.
    Ragin, Ann B.
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 127 - 136
  • [45] Multi-view Spectral Clustering Based on Graph Learning
    Song, Jinmei
    Liu, Baokai
    Zhang, Kaiwu
    Yu, Yao
    Du, Shiqiang
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6527 - 6532
  • [46] Multi-view clustering with orthogonal mapping and binary graph
    Zhao, Jianxi
    Kang, Fangyuan
    Zou, Qingrong
    Wang, Xiaonan
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [47] Consensus Graph Learning for Incomplete Multi-view Clustering
    Zhou, Wei
    Wang, Hao
    Yang, Yan
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT I, 2019, 11439 : 529 - 540
  • [48] Self-Supervised Graph Convolutional Network for Multi-View Clustering
    Xia, Wei
    Wang, Qianqian
    Gao, Quanxue
    Zhang, Xiangdong
    Gao, Xinbo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 24 : 3182 - 3192
  • [49] Scalable Multi-View Graph Clustering With Cross-View Corresponding Anchor Alignment
    Wang, Siwei
    Liu, Xinwang
    Liao, Qing
    Wen, Yi
    Zhu, En
    He, Kunlun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (05) : 2932 - 2945
  • [50] Multi-View Clustering With Graph Learning for scRNA-Seq Data
    Wu, Wenming
    Zhang, Wensheng
    Hou, Weimin
    Ma, Xiaoke
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (06) : 3535 - 3546