Multi-View Attributed Graph Clustering

被引:128
|
作者
Lin, Zhiping [1 ]
Kang, Zhao [1 ]
Zhang, Lizong [1 ]
Tian, Ling [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
关键词
Clustering methods; Sparse matrices; Data models; Clustering algorithms; Task analysis; Symmetric matrices; Motion pictures; Multi-view clustering; multiplex network; heterogeneous graph; high-order information; multi-layer networks; ROBUST;
D O I
10.1109/TKDE.2021.3101227
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view graph clustering has been intensively investigated during the past years. However, existing methods are still limited in two main aspects. On the one hand, most of them can not deal with data that have both attributes and graphs. Nowadays, multi-view attributed graph data are ubiquitous and the need for effective clustering methods is growing. On the other hand, many state-of-the-art algorithms are either shallow or deep models. Shallow methods may seriously restrict their capacity for modeling complex data, while deep approaches often involve large number of parameters and are expensive to train in terms of running time and space needed. In this paper, we propose a novel multi-view attributed graph clustering (MAGC) framework, which exploits both node attributes and graphs. Our novelty lies in three aspects. First, instead of deep neural networks, we apply a graph filtering technique to achieve a smooth node representation. Second, the original graph could be noisy or incomplete and is not directly applicable, thus we learn a consensus graph from data by considering the heterogeneous views. Third, high-order relations are explored in a flexible way by designing a new regularizer. Extensive experiments demonstrate the superiority of our method in terms of effectiveness and efficiency.
引用
收藏
页码:1872 / 1880
页数:9
相关论文
共 50 条
  • [31] Sparse Graph Tensor Learning for Multi-View Spectral Clustering
    Chen, Man-Sheng
    Li, Zhi-Yuan
    Lin, Jia-Qi
    Wang, Chang-Dong
    Huang, Dong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, : 3534 - 3543
  • [32] Tensor-Based Adaptive Consensus Graph Learning for Multi-View Clustering
    Guo, Wei
    Che, Hangjun
    Leung, Man-Fai
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (02) : 4767 - 4784
  • [33] Adaptive Graph Completion Based Incomplete Multi-View Clustering
    Wen, Jie
    Yan, Ke
    Zhang, Zheng
    Xu, Yong
    Wang, Junqian
    Fei, Lunke
    Zhang, Bob
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2493 - 2504
  • [34] Graph Learning With Riemannian Optimization for Multi-View Integrative Clustering
    Khan, Aparajita
    Maji, Pradipta
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2025, 9 (01): : 381 - 393
  • [35] Dual Fusion-Propagation Graph Neural Network for Multi-View Clustering
    Xiao, Shunxin
    Du, Shide
    Chen, Zhaoliang
    Zhang, Yunhe
    Wang, Shiping
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 9203 - 9215
  • [36] Unpaired Multi-View Graph Clustering With Cross-View Structure Matching
    Wen, Yi
    Wang, Siwei
    Liao, Qing
    Liang, Weixuan
    Liang, Ke
    Wan, Xinhang
    Liu, Xinwang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16049 - 16063
  • [37] Multi-View MERA Subspace Clustering
    Long, Zhen
    Zhu, Ce
    Chen, Jie
    Li, Zihan
    Ren, Yazhou
    Liu, Yipeng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3102 - 3112
  • [38] Tensorized Bipartite Graph Learning for Multi-View Clustering
    Xia, Wei
    Gao, Quanxue
    Wang, Qianqian
    Gao, Xinbo
    Ding, Chris
    Tao, Dacheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 5187 - 5202
  • [39] Deep Multi-view Clustering Based on Graph Embedding
    Zhang, Chen
    Zhou, Weidong
    Zhou, Jin
    Wang, Yingxu
    Han, Shiyuan
    Du, Tao
    Yang, Cheng
    Liu, Bowen
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 715 - 726
  • [40] Contrastive and attentive graph learning for multi-view clustering
    Wang, Ru
    Li, Lin
    Tao, Xiaohui
    Wang, Peipei
    Liu, Peiyu
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (04)